In this paper,we describe the minimal reducing subspaces of Toeplitz operators induced by non-analytic monomials on the weighted Bergman spaces and Dirichlet spaces over the unit ball B_(2).It is proved that each mini...In this paper,we describe the minimal reducing subspaces of Toeplitz operators induced by non-analytic monomials on the weighted Bergman spaces and Dirichlet spaces over the unit ball B_(2).It is proved that each minimal reducing subspace M is finite dimensional,and if dim M≥3,then M is induced by a monomial.Furthermore,the structure of commutant algebra v(T_(w)N_(z)N):={M^(*)_(w)NM_(z)N,M^(*)_(z)NM_(w)N}′is determined by N and the two dimensional minimal reducing subspaces of(T_(w)N_(z)N.We also give some interesting examples.展开更多
文摘In this paper,we describe the minimal reducing subspaces of Toeplitz operators induced by non-analytic monomials on the weighted Bergman spaces and Dirichlet spaces over the unit ball B_(2).It is proved that each minimal reducing subspace M is finite dimensional,and if dim M≥3,then M is induced by a monomial.Furthermore,the structure of commutant algebra v(T_(w)N_(z)N):={M^(*)_(w)NM_(z)N,M^(*)_(z)NM_(w)N}′is determined by N and the two dimensional minimal reducing subspaces of(T_(w)N_(z)N.We also give some interesting examples.