期刊文献+
共找到242篇文章
< 1 2 13 >
每页显示 20 50 100
Identification of clayey altered ophiolite in the Nujiang tectonic belt and new understanding of its impacts on engineering stability 被引量:2
1
作者 Jin-qiu Li Yong-shuang Zhang +2 位作者 Xue Li San-shao Ren Li-na Ran 《China Geology》 CAS CSCD 2023年第4期756-758,共3页
1. Objectives Ophiolites from the oceanic crust are important indicators for identifying tectonic suture zones. Recently, a continuous ophiolite belt was found near the Guola Mountain in the Nujiang tectonic belt. Due... 1. Objectives Ophiolites from the oceanic crust are important indicators for identifying tectonic suture zones. Recently, a continuous ophiolite belt was found near the Guola Mountain in the Nujiang tectonic belt. Due to intensive hydrothermal alteration during tectonic evolution, clayey altered ophiolite with special engineering geological characteristics was formed, which has an extremely adverse impact on engineering stability. However, the adverse properties of clayey altered ophiolite are still not well understood in engineering practices(Zhang YS, et al., 2011). 展开更多
关键词 TECTONIC belt ophiolite
下载PDF
Analysis and assessment of nickel and chromium pollution in soils around Baghejar Chromite Mine of Sabzevar Ophiolite Belt,Northeastern Iran 被引量:2
2
作者 Eisa SOLGI Javad PARMAH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2380-2387,共8页
The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the p... The key objective of this research was to estimate the Ni and Cr contents of soil around the Baghjar Chromite Mine(BCM)of Sabzevar Ophiolite Belt,Northeastern Iran,and assess the degree of soil pollution using the pollution indices.Soil samples(0-20 cm depth) were collected at various distances from the BCM.In the present research,heavy metals(Cr and Ni) in soil samples were analyzed by atomic absorption spectrometry to detect their concentrations and contour maps were produced to explain the metal spatial distribution.Also,the degree of metal pollution was quantified.The results indicate that the soils in the studied area are contaminated by Cr and Ni.The corresponding concentrations for Cr and Ni are(156.19±24.45) and(321.7±133.27) mg/kg,respectively,which exceed the corresponding maximum allowable concentrations in soils.The different indices demonstrate that soils around chromite mine are significantly contaminated with Cr and Ni,suggesting several times higher levels of toxic metals than normal ranges.The above results revealed that the heavy metal concentrations increase with increasing the distance from the mine and mining pollutants can be transported to long distances from their sources. 展开更多
关键词 ophiolite belt chromite mine spatial pattern geoaccumulation index pollution load index
下载PDF
Arc-trench System of the Paleo-Tethys Ocean: Inferred from Ophiolite in the Southern Lancangjiang Belt, SW China
3
作者 ZHAI Qingguo TANG Yue +3 位作者 HU Peiyuan JIN Xiaochi WANG Jun WANG Haitao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第S01期79-79,共1页
The Paleo-Tethys Ocean is usually interpreted as a Paleozoic ocean basin located between the Gondwana and Laurasia supercontinents. The Paleo-Tethyan orogenic record is well preserved in the Sanjiang area of SW China.... The Paleo-Tethys Ocean is usually interpreted as a Paleozoic ocean basin located between the Gondwana and Laurasia supercontinents. The Paleo-Tethyan orogenic record is well preserved in the Sanjiang area of SW China. However, ophiolites are commonly dismembered in orogenic belt, and complete ophiolite sequences are rare in the Sanjiang area. The southern Lancangjiang belt is the most complicated tectonic complex of the Sanjiang Paleo-Tethyan orogen, SW China, and is key to understanding the evolution of the orogen. In this study, we focused on mafic–ultramafic rocks in the Yakou and Banpo areas of the southern Lancangjiang belt, of which newly discovered Yakou rocks show a complete ophiolite sequence. These rocks are composed of serpentinized peridotite, isotropic and cumulate gabbros, massive and pillow basalts, and plagiogranite. Whole-rock geochemical data indicate that these rocks were formed in an oceanic ridge setting, and they show depletions in Nb, Ta and Ti, and enrichment in Pb, suggesting a supra-subduction zone affinity of a back-arc setting. Furthermore, positive εNd(t)(+4.5 to +6.7) and zircon εHf(t) values(+12.4 to +14.3), as well as mantle-like δ18O values(~5.5‰), suggest that these rocks were derived from a long-term depleted mantle source. All of these features suggest that the Yakou mafic-ultramafic complex represents an ophiolite suite, making it the first complete ophiolite sequence to be discovered in the southern Lancangjiang orogenic belt. The Banpo complex gabbroic rocks have similar whole-rock geochemical and Sr-Nd isotopic, and zircon O-Hf isotopic compositions to those of the Yakou complex, suggesting an N-MORB affinity. Thus, maficultramafic rocks from the Banpo and Jinghong areas are most likely dismembered ophiolite suites. Considering these various characteristics, we consider that the Yakou, Banpo, and Jinghong mafic-ultramafic complexes represent an ophiolite belt but not a magmatic arc belt. SHRIMP zircon U-Pb dating yield weighted mean ages of 305±3 Ma, 310±2 Ma, and 313±6 Ma. Therefore, we suggest that the Banpo-Jinghong mafic-ultramafic complex represents a Late Carboniferous(313–305 Ma) ophiolite belt in the Sanjiang Paleo-Tethyan orogen of SW China. Finally, we propose that an arc-trench system could have developed in the Sanjiang Paleo-Tethyan orogenic belt of SW China during the Late Carboniferous. 展开更多
关键词 ophiolite zircon U-Pb dating arc-trench system southern Lancangjiang belt PALEO-TETHYS
下载PDF
Diamonds, Super-Reduced and Crustal Minerals in Chromitites of the Hegenshan and Sartohay Ophiolites, Central Asian Orogenic Belt, China
4
作者 Paul T.ROBINSON YANG Jingsui +1 位作者 TIAN Yazhou ZHU Huang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期32-,共1页
The Central Asian Orogenic Belt(CAOB)is a huge tectonic mélange that lies between the North China Craton and the Siberian Block.It is composed of multiple orogenic belts,continental fragments,magmatic and metamor... The Central Asian Orogenic Belt(CAOB)is a huge tectonic mélange that lies between the North China Craton and the Siberian Block.It is composed of multiple orogenic belts,continental fragments,magmatic and metamorphic rocks,suture zones and discontinuous ophiolite belts.Although the Hegenshan and Sartohay ophiolites are separated by nearly 3000 km and lie in completely different parts of the CAOB,they are remarkably similar in many respects.Both are composed mainly of serpentinized peridotite and dunite,with minor gabbro and sparse basalt.They both host significant podiform chromitites that consist of high-Al,refractory magnesiochromite with Cr#s[100Cr/(Cr+Al)]averaging<60.The Sartohay ophiolite has a zircon U-Pb age of ca.300 Ma and has been intruded by granitic plutons of similar age,resulting in intense hydrothermal activity and the formation of gold-bearing listwanites.The age of the Hegenshan is not firmly established but is thought to have formed in the Carboniferous.Like many other ophiolites that we have investigated in other orogenic belts,the chromitites in these two bodieshave abundant diamonds,as well as numerous super-reduced and crustal minerals.The diamonds are mostly,colorless to pale yellow,200-300μm across and have euhedral to anhedral shapes.They all have low carbon isotopes(δ14C=-18 to-29)and some have visible inclusions.These are accompanied by numerous super-reduced minerals such as moissanite,native elements(Fe,Cr,Si,Al,Mn),and alloys(e.g.,Ni-Mn-Fe,Ni-Fe-Al,Ni-Mn-Co,Cr-Ni-Fe,Cr-Fe,Cr-Fe-Mn),as well as a wide range of oxides,sulfides and silicates.Grains of zircon are abundant in the chromitites of both ophiolites and range in age from Precambrian to Cretaceous,reflecting both incorporation of old zircons and modification of grains by hydrothermal alteration.Our investigation confirms that high-Al,refractory chromitites in these two ophiolites have the same range of exotic minerals as high-Cr metallurgical chromitites such as those in the Luobusa ophiolite of Tibet.These collections of exotic minerals in ophiolitic chromitites indicate complex,multi-stage recycling of oceanic and continental crustal material at least to the mantle transition zone,followed by uprise and emplacement of the peridotites into relatively shallow ophiolites. 展开更多
关键词 CR China Diamonds Super-Reduced and Crustal Minerals in Chromitites of the Hegenshan and Sartohay ophiolites Central Asian Orogenic belt
下载PDF
Comparison of Different-sized Chromite Mineralizations in the Yarlung-Zangbo Ophiolite Belt, Southern Tibet
5
作者 ZHU Xiangkun SHE Yuwei +2 位作者 HE Yuan MA Jianxiong SUN Jian 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期56-57,共2页
Podiform chromitites are characteristically occurred in ophiolites(e.g.,Thayer,1964;Dickey,1975).However,the metallogenic processes for podiform chromitites are still unclear.Early models involved fractional crystalli... Podiform chromitites are characteristically occurred in ophiolites(e.g.,Thayer,1964;Dickey,1975).However,the metallogenic processes for podiform chromitites are still unclear.Early models involved fractional crystallization and crystal settling from picritic or basaltic melts in magma chambers(Dickey,1975;Boudier and Coleman,1981),but it was also proposed that podiform chromitites formed from partial melting and melt extraction in host mantle peridotites(Dick,1977;Dick and Bullen,1984).Recent studies by the majority of authors have suggested that melt-rock interaction at the Moho transition zone may have played a key role in the formation of podiform chromitites(Zhou and Robinson,1994;Zhou et al.,1996,2005,2014;Robinson,2008;Page and Barnes,2009;Uysal et al.,2009,2012;González-Jiménez et al.,2011,2015).Based on the occurrence of some ultrahigh pressure minerals(e.g.diamond and coesite)in chromitites,it has been proposed recently that the formation of podiform chromitite is likely related to multiple processes inclusing mantle recycling(Yang et al.,2007;Yamamoto et al.,2013).Although geat progresses have been made towards understanding the genesis of podiform chromitites,some fundamental issues in remain unanswered.For examples,what are the major controls on the size of chromitites?And why some ophiolites contain large podiform chromitite bodies,whereas most ophiolitic massifs are essentially chromitite-barren? The Yarlung-Zangbo Ophiolite belt is one of the most famous ophiolite zone in the world.It contains fresh peridotites as well as different-sided podiform chromitites.The Luobusha ophiolite in the eastern segment of the belt hosts the largest chromite deposit in China.In the central and western segments of belt the Dazhuqu and Dongbo ophiolitic massifs contain some small-scale chromitite bodies.Such characteristics make the Yarlung-Zangbo Ophiolites an ideal subject to investigate the major controls on the metallogenesis of podiform chromitites. The Luobusha chromitites are large lens and enclosed in dunite.In contrast,the Dazhuqu and Dongbo chromitites display generally as narrow dykes or irregular seams with dunite envelopes.The closely spatial association of the chromitites and dunite envelopes,together with their textural features,support a petrogenetic model that the chromitites from the Luobusha,Dazhuqu and Dongbo massifs form from reaction of melt with host peridotite.In terms of chemical composition of chromite,there are distinctive differences between those from the Luobusha and the Dazhuqu or the Dongbo.Chromite from the Luobusha chromitites has high Cr#(71-82),whereas Chromite in the Dazhuqu chromitites show relatively low Cr#(16-63),and chromite in the Dongbo chromitites includes low Cr#(11-47)and high Cr#(70-81)types.For the Dongbo and Dazhuqu massifs,linear trends of Cr#with Mg O,Fe Ot,Ni,Ga,V and Sc in chromite from the chromitites and dunites of are similar to those of the host peridotites,suggesting that the melt-rock reaction may provide major budget of Cr for the chromitites.The similar compositions at a given Cr#in chromite from these rocks also demonstrate that the chromitites may have been formed by in-situ crystallization of chromite under low melt/rock ratio.In contrast,the Luobusha chromitites have different trends of compositions in chromite from that of the host peridotites,implying that the formation of the chromitite bodies requires a continual replenishment of Cr-rich melts from deeper mantle.Fractionation and accumulation of chromite from a large volume of Cr-rich melt may play an important role on the formation of the Luobusha chromitites.MORB-normalized trace element patterns of chromite from the Luobusha chromitites suggest that it has been formed from Cr-rich boninitic melt at surpra-subduction zone(SSZ)setting.However,the Dongbo and Dazhuqu chromitites have formed originally from a MORB-affinity melt at a mid-ocean ridge(MOR)environment. In summary,the Luobusha chromitites crystallized from a Cr-rich melt in a dynamic conduit,where fractional crystallization and crystal settling play a key role in formation of the large chromitites.In contrast,the small-scale mineralizations of the Dongbo and Dazhuqu chromitite pods are formed from in situ produced melts.Podiform chromitites can be formed in MOR environment,whereas the higher Cr content in boninitic melt and assimilation of subducted slab materials at SSZ setting may benefit the formation of large chromite deposit. 展开更多
关键词 Comparison of Different-sized Chromite Mineralizations in the Yarlung-Zangbo ophiolite belt Southern Tibet
下载PDF
Geochemistry and Geochronology of the Jinghong Ophiolites:Implications for the Tectonic Evolution of the Eastern Paleo-Tethys 被引量:1
6
作者 ZHU Jianjiang LIU Fulai +4 位作者 WANG Fang XIE Shiwen CAI Jia JI Lei WANG Huining 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第5期1509-1526,共18页
The Jinghong mafic-ultramafic complex,exposed in the eastern margin of the Lancangjiang tectonic belt,is related to the subduction of the Paleo-Tethys Ocean.Its petrogenesis plays a key role in constraining the tecton... The Jinghong mafic-ultramafic complex,exposed in the eastern margin of the Lancangjiang tectonic belt,is related to the subduction of the Paleo-Tethys Ocean.Its petrogenesis plays a key role in constraining the tectonic evolution of the eastern Paleo-Tethys Ocean in southwestern China.In this study,we present petrological,geochemical and geochronological results of the Jinghong complex rocks,in order to decipher their origin and tectonic significance.The Jinghong mafic-ultramafic complex was composed of peridotite,gabbro,basalt and minor plagiogranite.Whole-rock geochemical data of the mafic rocks indicate that they have both MORB and IAB affinities and plot in the back-arc basin basalt(BABB)field in the FeO^(*)/MgO vs.TiO_(2) diagram.Combined with their trace element characteristics,it can be concluded that the Jinghong mafic-ultramafic complex represents an ophiolite suite that was formed in a back-arc ocean basin.Precise LA-ICP-MS zircon U-Pb dating yielded weighted mean ^(206)Pb/^(238)U ages of 298.4±1.7 Ma,294.3±1.6 Ma,and 292.8±2.0 Ma for gabbroic rocks from this complex,which indicates that the Jinghong ophiolites were formed during the early Permian(298-293 Ma).We propose that during subduction of the main Paleo-Tethys Ocean,a back-arc ocean basin was formed at the east of the Lancangjiang tectonic belt. 展开更多
关键词 ophiolite zircon U-Pb dating back-arc basin Lancangjiang belt PALEO-TETHYS
下载PDF
The Tectonic Implications of the Hongliuhe-Xichangjing Ophiolitic Mélanges Belt in the Central Region of the Beishan Orogen, NW China——Constrained by the U-Pb Ages of Detrital Zircons of the Metasandstones 被引量:1
7
作者 TIAN Jian XIN Houtian +4 位作者 TENG Xuejian DUAN Xiaolong CHENG Xianyu ZHANG Yong REN Bangfang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第4期1256-1275,共20页
The tectonic attributes of different blocks within orogenic belts are of great significance for the study of accretionary processes and the evolution of Earth. The Hongliuhe-Niujianzi-Baiyunshan-Xichangjing ophiolitic... The tectonic attributes of different blocks within orogenic belts are of great significance for the study of accretionary processes and the evolution of Earth. The Hongliuhe-Niujianzi-Baiyunshan-Xichangjing ophiolitic mélange belt(HXOMB) is distributed in the heart of the Beishan Orogen, the Shuangyingshan and Minshui-Hanshan blocks being distributed in the south and north of the HXOMB respectively, and a large number of Early Paleozoic geological units are exposed on the blocks. According to the zircon age populations of the metasandstones in the Baiyunshan area recovered in this paper, when compared with the zircon age populations of the Paleozoic metasandstones reported in the Niujuanzi and Hanshan areas, we found that the metasandstones of the Shuangyingshan Block have age peaks at c. 598 Ma, 742 Ma, 828 Ma, 941 Ma, 990 Ma, 1168 Ma, 1636 Ma, 2497 Ma with non-significant age populations of 1500–1300 Ma, showing a possible affinity with the Tarim Craton;the metasandstones of the Minshui-Hanshan Block have age peaks at c. 606 Ma, 758 Ma, 914 Ma, 1102 Ma, 1194 Ma, 1304 Ma, 1672 Ma with significant age populations of 1500-1300 Ma, showing a possible affinity with the Chinese Central Tianshan Block. Therefore, the HXOMB of the Beishan Orogen is of great significance in plate segmentation, which separates the Tarim Craton in the south and the Chinese Central Tianshan Block in the north. Based on the evolutionary process of the Hongliuhe-Xichangjing ocean in the Beishan Orogen, we believe that break-up and convergence can be recognized as having occurred twice between the Chinese Central Tianshan Block and the Tarim Craton since the Mesoproterozoic in the Beishan area. This was related firstly to the break-up of the Columbia Supercontinent and the convergence of the Rodinia Supercontinent, mainly during the Middle Mesoproterozoic to Early Neoproterozoic, and secondly to the opening and closing of the Hongliuhe-Xichangjing ocean, mainly during the Early Paleozoic. 展开更多
关键词 U-Pb ages of detrital zircons metasandstones Beishan Orogen Hongliuhe-Xichangjing ophiolitic mélanges belt Tarim Craton Chinese Central Tianshan Block
下载PDF
Multi-stage Process of the Bulqiza Chromitites, Eastern Ophiolitic Belt, Albania
8
作者 XIONG Fahui YANG Jingsui +2 位作者 Paul T.ROBINSON Yildirim DILEK Ibrahim MILUSHI 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第S1期245-,共1页
The ultramafic massif of Bulqiza,which belongs to the eastern ophiolitic belt of Albania,is the most important area for metallurgical chromitite ores.The massif consists of a thick(>4 km)rock sequence,with a genera... The ultramafic massif of Bulqiza,which belongs to the eastern ophiolitic belt of Albania,is the most important area for metallurgical chromitite ores.The massif consists of a thick(>4 km)rock sequence,with a generalized 展开更多
关键词 Eastern ophiolitic belt Multi-stage Process of the Bulqiza Chromitites ROCK Albania
下载PDF
Petrology, Geochronology and Geochemistry of the Xar Moron River Ophiolite: Implications for the Tectonic Evolution of the Paleo-Asian Ocean
9
作者 LIU Jianfeng LI Jinyi +1 位作者 ZHANG Wenlong YIN Dongfang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第S01期31-31,共1页
As the largest accretionary orogen, the crustal tectonic framework and evolution of the Central Asian Orogenic Belt(CAOB) have always been one of the hot topics among geologists(Seng?r et al., 1993, 1996;Jahn et al., ... As the largest accretionary orogen, the crustal tectonic framework and evolution of the Central Asian Orogenic Belt(CAOB) have always been one of the hot topics among geologists(Seng?r et al., 1993, 1996;Jahn et al., 2000 a;Badarch et al., 2002;Windley et al., 2007;Li et al., 2009). The formation of the main part of the crust in the CAOB involved continuous lateral accretion of island arcs and accretionary complexes along the margins of the Siberian, Sino-Korean and Tarim paleocontinents and the final collision between these continental margins because of the subduction of the Paleo-Asian Ocean plate since Mesoproterozoic. The ophiolites, which represent the fragments of ancient oceanic lithosphere, are the direct evidence for the study of the evolution of orogenic belts. Based on field geological survey, the mantle peridotite(serpentinite), gabbro, basalt and radiolarian bedded chert, which were deemed as the "ophiolite trinity", were identified as isolated blocks in the matrix of pelitic siltstone and silty mudstone in the Kedanshan, Xingshuwa and Jiujingzi areas along the Xar Monron River in southeast Inner Mongolia of China. Besides, there were plenty of other exotic blocks, such as limestone and sandstone, in the matrix. Both of the matrix and blocks underwent strong foliated deformation. All of these rocks above constitute a tectonic mélange. Zircon U-Pb dating for the gabbro blocks in the Xingshuwa and Jiujingzi ophiolites reveals that they were formed in early Permian(275-280 Ma). The ages of the gabbros, together with the middle Permian radiolaria fossils in the chert reported by Wang and Fan(1997), indicate that the oceanic basin was not closed in early-middle Permian. The geochemical compositions of the basaltic blocks distributed in different locations in the Xingshuwa tectonic mélange display different genetic types of normal mid-ocean ridge basalt(N-MORB), enriched mid-ocean ridge basalts(E-MORB), oceanic island basalt(OIB), island arc basalt and continental marginal arc basalt, which indicates what they represented is a complex oceanic basin. Combining with the studies on regional magmatism, strata and structure data, it is suggested that the Xar Moron River Ophiolite belt represented the final suture zone of the Paleo-Asian Ocean in the southeast Inner Mongolia, and the ocean did not close before late Permian. 展开更多
关键词 ophiolite the Central Asian Orogenic belt the Paleo-Asian Ocean GEOCHEMISTRY tectonic evolution
下载PDF
Neoproterozoic Trench-arc System in the Western Segment of Jiangnan Orogenic Belt, South China 被引量:4
10
作者 SHU Liangshu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第S01期49-49,共1页
The Jiangnan orogenic belt is a key to understanding of the Neoproterozoic tectonic evolution of the South China Block. We investigate the mafic-ultramafic suites of lherzolite, pyroxenite, gabbro, pillow basalt and g... The Jiangnan orogenic belt is a key to understanding of the Neoproterozoic tectonic evolution of the South China Block. We investigate the mafic-ultramafic suites of lherzolite, pyroxenite, gabbro, pillow basalt and gabbroic diorite as well as red jasper interbedded with marine marbles that are mainly exposed as fault-trapped blocks in the Yuanbaoshan and Longsheng domains of the western Jiangnan belt. The postcollisional granite plutons that intruded the ultramafic-mafic rocks are developed well. Zircons in the gabbro yield crystallization ages of 867±10 Ma, 863±8 Ma, 869±9 Ma and 855±5 Ma whereas those from the granites show ages of 823±5 Ma, 831±5 Ma, 824±5 Ma and 833±6 Ma. The Neoproterozoic serpentinited ultramafic samples display minor REE enriched pattern with depletion of Rb, Ba, Nb, Ta and Ti, similar to those of SSZ type ophiolite. The coeval gabbro shows tholeiitic features and is characterized by negative Ba, Nb, Ta, Zr, Hf and Sr anomalies and LREE enriched patterns, with a minor negative Eu anomaly. Some zircon grains from the Longshen gabbro yield Neoarchean-Paleoproterozoic ages(2859–2262 Ma), suggesting its continental arc setting. Geochemical signature of the maficultramafic rocks is consistent with subduction related setting. The pyroxene-bearing diorite exhibits a distinctive arc affinity. The zircons from the gabbro show positive εHf(t) values ranging from 3.9 to 13.8. The granitoids are typical S–type granites with high ACNK values(1.15–1.40) and negative εHf(t) values(–15.1 to –3.2), and are classified as collision–related granites. Combined with the occurrences of mafic-ultramafic rocks, siliceous marble and red jasper mixed with basalt, our new results suggest the presence of a Tonian(863–869 Ma) SSZ ophiolite system and continental arc-type magmatism in the western Jiangnan orogen. 展开更多
关键词 ophiolitic mélange trench-arc system NEOPROTEROZOIC Western Jiangnan belt South China
下载PDF
THE ROCK ASSOCIATION IN JINSHAJIANG MELANGE BELT
11
作者 Lin Shiliang (Chengdu Institute of Geology and Mineral Resources,Chengdu 610082,China) 《地学前缘》 EI CAS CSCD 2000年第S1期126-126,共1页
Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the stru... Jinshajiang melange belt locates between Jianda\|Weixi island arc and Zhongzha massif. The melange belt and island arc makes up Jinshajiang plate junction. Although subsequent tectonic movements had complexed the structural form of Jinshajiang melange belt, there are still a lots of structural block remained which carried amount of information about the tectonic evolution of the belt. Recent researches have identified several kinds of rock association in the structural blocks.(1) Ophiolite:The ophiolite consists of serpentinization ultramafite, ultramafic cumulus crystal rock (pyroxenite, dunite), gabbro, diabase cluster, ocean\|ridge type basalt, plagiogranite and radiolarian silicalite. The isotopic age shows that the ultramafite and basalt formed during Upper Carboniferous and Lower Permian. The silicalite is high in radiolaria of Lower Permian.(2) Rock association of oceanic island\|arc:The liptocoenosis of oceanic island\|arc scatter in melange belt, it mainly consists of sandy slate, pyroclastic rock, silicalite, basalt and andesite. A part of volcanic rock belongs to calc\|alkaline volcanic suite and the other is tholeiite. The petrochemistry, REE and microelement of volcanic rock have the feature of the rock in ocean\|island arc. The isotopic age of basalt shows that the ocean\|island arc formed in Lower Permian. 展开更多
关键词 ROCK ASSOCIATION Jinshajiang MELANGE belt ophiolite structura l BLOCKS
下载PDF
全球天然氢气勘探开发利用进展及中国的勘探前景 被引量:7
12
作者 窦立荣 刘化清 +4 位作者 李博 齐雯 孙东 尹路 韩双彪 《岩性油气藏》 CAS CSCD 北大核心 2024年第2期1-14,共14页
在全球能源脱碳背景下,天然氢气作为一种一次能源,因其零碳、可再生的优点而备受关注,但中国目前还未开展专门针对天然氢气的勘探工作。通过介绍全球已知高含量天然氢气(体积分数大于10%)气藏的主要形成地质环境及成因类型,系统总结了... 在全球能源脱碳背景下,天然氢气作为一种一次能源,因其零碳、可再生的优点而备受关注,但中国目前还未开展专门针对天然氢气的勘探工作。通过介绍全球已知高含量天然氢气(体积分数大于10%)气藏的主要形成地质环境及成因类型,系统总结了天然氢气富集的有利地质条件,并结合国外天然氢气的勘探开发现状,评价了中国天然氢气的勘探前景。研究结果表明:(1)全球高含量天然氢气主要发育于蛇绿岩带、裂谷和前寒武系富铁地层中,且以无机成因为主,富铁矿物的蛇纹石化过程是天然氢气最主要的成因来源,其次为地球深部脱气和水的辐解。(2)优质的氢源与良好的运移通道是氢气富集的前提,而盖层的封盖能力是天然氢气能否成藏的关键要素;天然氢气作为伴生气时,传统盖层对其具备封盖能力,但当其含量较高时,传统盖层可能难以形成有效封盖;裂谷环境、蛇绿岩发育区以及断裂发育的前寒武系富铁地层是富氢气藏的勘探有利区。(3)国外多个国家和地区已制定了天然氢气的勘探开发和利用计划,其中,马里已实现天然氢气的商业开采,美国、澳大利亚也已成功钻探天然氢气勘探井。(4)中国高含量氢气区与富氢地质条件高度匹配,天然氢气勘探前景良好,郯庐断裂带及周缘裂陷盆地区、阿尔金断裂带及两侧盆地区、三江构造带—龙门山断裂带及周缘盆地区的天然氢气勘探潜力较大;中国应尽快开展天然氢气普查工作,加强氢气成藏过程研究和潜力评价,并进行勘探技术、开采分离技术和储运技术的攻关,为天然氢气的大规模开发利用做好技术储备。 展开更多
关键词 新能源 天然氢气 无机成因 地球深部脱气 水辐解 蛇绿岩带 裂谷 前寒武系富铁地层 郯庐断裂带 阿尔金断裂带 三江构造带—龙门山断裂带
下载PDF
西南三江甘孜-理塘洋晚古生代构造演化:来自理塘蛇绿混杂岩堆晶辉长岩U-Pb年龄的约束 被引量:2
13
作者 喻光明 毛世东 +2 位作者 周振菊 谢亘 黄豪擎 《地质通报》 CAS CSCD 北大核心 2024年第1期61-75,共15页
理塘县高城镇西北的擦岗隆洼岩组是一套以玄武岩为基质的蛇绿混杂岩,通过该蛇绿混杂岩中堆晶辉长岩的LA-ICP-MS锆石U-Pb定年,显示其年龄范围介于349~274 Ma之间,形成2个年龄组:第一组斜锆石^(206)Pb/^(238)U年龄加权平均值为346±17... 理塘县高城镇西北的擦岗隆洼岩组是一套以玄武岩为基质的蛇绿混杂岩,通过该蛇绿混杂岩中堆晶辉长岩的LA-ICP-MS锆石U-Pb定年,显示其年龄范围介于349~274 Ma之间,形成2个年龄组:第一组斜锆石^(206)Pb/^(238)U年龄加权平均值为346±17Ma,代表堆晶辉长岩早期岩浆活动的时代;第二组斜锆石^(206)Pb/^(238)U年龄加权平均值为286.2±5.1 Ma,代表了堆晶辉长岩晚期岩浆活动的结晶年龄。擦岗隆洼岩组的超基性—基性岩具有N-MORB(正常洋中脊玄武岩)和E-MORB(富集型洋中脊玄武岩)组合特征,指示这些岩石可能形成于洋中脊环境,岩浆物质源自N-MORB所代表的亏损上地幔源区受地幔柱交代混染后而形成的混合源区。研究认为,甘孜-理塘洋最早可能在中泥盆世,受区域地幔柱活动影响开始拉张,导致中咱地块从扬子陆块西缘裂离,并在早石炭世发育形成洋盆。在中晚三叠世甘孜-理塘洋壳开始向西俯冲,并于晚三叠世末闭合,区域进入弧陆碰撞造山阶段。 展开更多
关键词 斜锆石U-Pb年龄 堆晶辉长岩 擦岗隆洼岩组 甘孜-理塘蛇绿混杂岩带
下载PDF
Geochemistry of ophiolite cherts from the Qinling orogenic belt and implications for their tectonic settings 被引量:8
14
作者 ZHANG Chengli GAO Shan +4 位作者 ZHANG Guowei GUO Anlin YUAN Honglin LIU Xiaoming WANG Jianqi 《Science China Earth Sciences》 SCIE EI CAS 2004年第4期329-337,共9页
Paleozoic cherts from the Mianl and the Erlangping ophiolite zones of the Qinling orogenic belt are characterized by low Si/Al ratios (52.14-683.52 in the Mianle cherts, 12.29-58.62 in the Erlangping cherts), Fe2O3 (0... Paleozoic cherts from the Mianl and the Erlangping ophiolite zones of the Qinling orogenic belt are characterized by low Si/Al ratios (52.14-683.52 in the Mianle cherts, 12.29-58.62 in the Erlangping cherts), Fe2O3 (0.01-0.35 and 0.02-1.24) and high Al2O3/(Al2O3+Fe2O3) ratios (0.82-0.99 and 0.83-0.99). The negative correlation between Si2O and Al2O3 in the cherts reflects the important role of terrigenous components. The Erlangping cherts have Lan/Cen=0.9-1.15 and Ce/Ce*=0.95-1.15 with low contents of V, Ni and Cu, consistent with those of cherts forming on the continental margin. In contrast, the Ce/Ce* ratios of the Mianle cherts range from 0.71 to 1.18 and Lan/Cen from 0.88 to 1.43 with slightly high V, Ni and Cu, which are similar to cherts found in the mid-ocean ridges and pelagic basins. Combined with the features of basic lavas associated with the cherts, it is suggested that during the Paleozoic, when the back-arc basin represented by the Erlangping ophiolite commenced shrinking in size in the mid-Ordovician, the southern Qinling was still in an extensional regime and finally grew into a new limited oceanic basin in the early Carboniferous. 展开更多
关键词 Qinling orogenic belt radiolarian cherts ophiolite m閘ange zone.
原文传递
An Overview on the Composition and Age of Upper Crust of Proto-Tethyan Lajishan Intra-oceanic Arc,NE Tibet Plateau
15
作者 FU Changlei HE Xiaohu +5 位作者 YAN Zhen Jonathan CAITCHISON XIAO Wenjiao WANG Bingzhang LI Wufu LI Yusen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第2期285-302,共18页
Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,g... Identification and anatomy of oceanic arcs within ancient orogenic belt are significant for better understanding the tectonic framework and closure process of paleo-ocean basin.This article summarizes the geological,geochemical,and geochronological characteristics of upper crust of Proto-Tethyan Lajishan intra-oceanic arc and provides new data to constrain the subduction evolution of the South Qilian Ocean.The intra-oceanic arc volcanic rocks,including intermediate-mafic lava,breccia,tuff,and minor felsic rocks,are distributed along southern part of the Lajishan ophiolite belt.Geochemical and isotopic compositions indicate that the intermediate-mafic lava were originated from depleted mantle contaminated by sediment melts or hydrous fluids,whereas the felsic rocks were likely generated by partial melting of juvenile mafic crust in intra-oceanic arc setting.Zircons from felsic rocks yield consistent and concordant ages ranging from 506 to 523 Ma,suggesting these volcanic rocks represent the relicts of upper crust of the Cambrian intra-oceanic arc.Combined with the Cambrian forearc ophiolite and accretionary complex,we suggest that the Cambrian intra-oceanic arc in the Lajishan ophiolite belt is belonging to the intra-oceanic arc system which was generated by south-directed subduction in the South Qilian Ocean at a relatively short interval between approximately 530 and 480 Ma. 展开更多
关键词 volcanic rocks intra-oceanic arc U-Pb age Lajishan ophiolite belt South Qilian Ocean Proto-Tethyan realm
下载PDF
中蒙边境地区主要蛇绿岩带特征及地质意义
16
作者 滕学建 付超 +2 位作者 李俊建 李志丹 唐文龙 《华北地质》 2024年第3期1-13,共13页
【研究目的】中国与蒙古的交界地区构造位置上位于中亚造山带,沿边境两侧断续出露呈团块、带状分布的蛇绿(混杂)岩带。蛇绿岩作为古大洋岩石圈的残片,是研究岩石圈地幔演化、俯冲带物质循环和重建古地理格局的天然实验室。【研究方法】... 【研究目的】中国与蒙古的交界地区构造位置上位于中亚造山带,沿边境两侧断续出露呈团块、带状分布的蛇绿(混杂)岩带。蛇绿岩作为古大洋岩石圈的残片,是研究岩石圈地幔演化、俯冲带物质循环和重建古地理格局的天然实验室。【研究方法】本文依托中蒙合作1/100万系列地质图件编制项目成果,结合前人针对该地区蛇绿(混杂)岩带的研究成果,进一步厘定中亚造山带的构造演化和恢复其构造格局。【研究结果】在研究区划分出十四条蛇绿(混杂)岩带,综合阐述了其时空分布特征,建立了蛇绿(混杂)岩带的时空分布格架。【结论】研究结果表明,中蒙边境蛇绿岩带自西向东呈年龄逐渐年轻的趋势(新元古代-早二叠世),揭示了中亚造山带西段和东段大洋岩石圈地幔演化的差异性。多数蛇绿(混杂)岩带属于与俯冲作用密切相关的SSZ(supra-subduction zone)型蛇绿岩,但弧前和弧后的构造背景的争议仍需进一步研究加以限定。 展开更多
关键词 中蒙边界 中亚造山带 蛇绿岩 时空分布 构造演化
下载PDF
Metamorphic peridotite and rock series of ophiolite belt in Mt. Ailao, Yunnan Province 被引量:7
17
作者 Shen Shangyue Wei Qirong +1 位作者 Cheng Huilan Mo Xuanxue 《Chinese Science Bulletin》 SCIE EI CAS 1998年第11期955-958,共4页
The metamophic peridotite of ophiolite belt in Mt. Ailao is composed of lherzolite and harzburgite. The former shows the charateristics of primary pyrolite and the latter shows those of deleted (relict)pyrolite. By pa... The metamophic peridotite of ophiolite belt in Mt. Ailao is composed of lherzolite and harzburgite. The former shows the charateristics of primary pyrolite and the latter shows those of deleted (relict)pyrolite. By partial melting of lherzolite, two primary magmas: tholeiitic magma and picrite-basalt magma are formed. The former evoluted into gabbro-diabase-pyroxenic basalt rock series and show the characteristics of MORB; while the latter evoluted into gabbro-diorite-albite basalt-picrite basalt one, and show the characteristics of para-MORB. 展开更多
关键词 Yunnan Province Mt. Ailao ophiolite belt METAMORPHIC PERIDOTITE ROCK series.
全文增补中
新疆东昆仑鸭子泉蛇绿岩的基本特征及其大地构造意义 被引量:48
18
作者 杨金中 沈远超 +2 位作者 李光明 刘铁兵 曾庆栋 《现代地质》 CAS CSCD 北大核心 1999年第3期309-314,共6页
鸭子泉蛇绿岩位于新疆东昆仑祁漫塔格山系中部, 与阿尔金断裂平行产出, 由超基性岩、基性岩和拉斑玄武岩等组成。它侵位于早石炭世含放射虫的深海沉积物中, 可能代表了东昆仑祁漫塔格地区晚古生代的板块俯冲带。蛇绿岩可能来源于俯... 鸭子泉蛇绿岩位于新疆东昆仑祁漫塔格山系中部, 与阿尔金断裂平行产出, 由超基性岩、基性岩和拉斑玄武岩等组成。它侵位于早石炭世含放射虫的深海沉积物中, 可能代表了东昆仑祁漫塔格地区晚古生代的板块俯冲带。蛇绿岩可能来源于俯冲带附近的由小型扩张中心形成的次生洋壳, 之后由于消减作用, 侵位到深海沉积物中, 形成了造山带中的蛇绿岩。 展开更多
关键词 蛇绿岩带 造山带 俯冲带 鸭子泉 蛇绿岩
下载PDF
大别山区(安徽部分)的构造格局和演化过程 被引量:228
19
作者 徐树桐 江来利 +1 位作者 刘贻灿 张勇 《地质学报》 EI CAS CSCD 北大核心 1992年第1期1-14,T001,共15页
大别山区是扬子和中朝大陆板块之间的碰撞造山带,由扬子大陆板块中的前陆褶冲带、俯冲盖层和俯冲基底、包含在俯冲基底中的含柯石英和金刚石的超高压变质帝、变质蛇绿混杂岩带、中朝大陆板块南缘的弧前复理石推覆体以及其北缘的反向褶... 大别山区是扬子和中朝大陆板块之间的碰撞造山带,由扬子大陆板块中的前陆褶冲带、俯冲盖层和俯冲基底、包含在俯冲基底中的含柯石英和金刚石的超高压变质帝、变质蛇绿混杂岩带、中朝大陆板块南缘的弧前复理石推覆体以及其北缘的反向褶冲带、北部边缘为磨拉斯的后继盆地组成。古大别海洋板块于早古生代向北俯冲时,中朝大陆板块南缘可能出现过火山弧和弧后盆地。卷入前陆褶冲带的地层以及榴辉岩的Sm/Nd同位素定时表明,两个大陆板块的强烈碰撞发生在中生代早期。 展开更多
关键词 碰撞造山带 构造 变质带 大别山
下载PDF
中天山南缘乌瓦门蛇绿岩形成构造环境 被引量:54
20
作者 董云鹏 周鼎武 +4 位作者 张国伟 张成立 夏林圻 徐学义 李向民 《岩石学报》 SCIE EI CAS CSCD 北大核心 2005年第1期37-44,共8页
中天山南缘乌瓦门蛇绿混杂岩主要由构造岩块和混杂基质两部分组成,构造岩块主要包括:由变质橄榄岩、辉长岩、玄武岩组成的蛇绿岩残块、中天山基底变质岩系的斜长角闪岩和片麻岩构造块体以及来源于南天山泥盆系的大理岩残块;混杂基质主... 中天山南缘乌瓦门蛇绿混杂岩主要由构造岩块和混杂基质两部分组成,构造岩块主要包括:由变质橄榄岩、辉长岩、玄武岩组成的蛇绿岩残块、中天山基底变质岩系的斜长角闪岩和片麻岩构造块体以及来源于南天山泥盆系的大理岩残块;混杂基质主要为强烈剪切变形的绿泥石英片岩、绢云石英片岩、二云母石英片岩、千枚岩和变砂岩。变质橄榄岩主要为蛇纹石化的橄榄岩,SiO2、TiO2、Al2O3和CaO含量相对较高,而MgO含量相对较低。总体特征类似于二辉橄榄岩。稀土元素总量低,是球粒陨石稀土元素总量的0.3-0.5倍,以强烈亏损LREE为特征。乌瓦门玄武岩属于拉斑系列,主量元素显示低Al2O3、高TiO2、MgO,贫K2O、P2O5,Na2O>K2O性状,并以低∑REE、LREE亏损、高场强元素不分异为特征,类似于N-MORB。同时,部分岩石样品在高场强元素地球化学性状类似的基础上,具有不同程度的LILE、Th富集和Nb、Ta亏损,以及Pb富集特征,并有Zr的轻度低谷,显示岩浆源区曾遭受不同程度的俯冲带流体交代作用的影响。综合分析认为,乌瓦门蛇绿岩形成于弧后盆地环境。 展开更多
关键词 蛇绿混杂岩 地球化学 弧后盆地 天山造山带
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部