Reptiles are the most morphologically and physiologically diverse tetrapods,with the squamates having the most diverse habitats.Lizard is an important model system for understanding the role of visual ecology,phylogen...Reptiles are the most morphologically and physiologically diverse tetrapods,with the squamates having the most diverse habitats.Lizard is an important model system for understanding the role of visual ecology,phylogeny and behavior on the structure of visual systems.In this study,we compared three opsin genes(RH2,LWS and SWS1)among 49 reptile species to detect positively selected genes as well as amino acid sites.Our results indicated that visual opsin genes have undergone divergent selection pressures in all lizards and RH2 and LWS suffered stronger positive selection than SWS1.Twelve positively selected sites were picked out for RH2 and LWS.Moreover,many diagnostic sites were found between geckos and non-gecko lizards,most of which were located near the positively selected sites and some of them have already been reported to be responsible for significant shifts of the wavelength of maximum absorption(λ_(max)).The results indicated that the gecko lineage accelerated the evolution of these genes to adapt to the dim-light environment or nocturnality as well as the switch between nocturnality and diurnality.展开更多
Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photo...Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide(Lb GP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of Lb GP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of Lb GP as a protective pre-treatment on days 1–7;intraperitoneal administration of 40 mg/kg N-methylN-nitrosourea to induce photoreceptor injury on day 7;and continuation of orally administered Lb GP on days 8–14. Treatment with Lb GP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. Lb GP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, Lb GP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.展开更多
Eye degeneration is a common troglomorphic character of cave-dwelling organisms. Comparing the morphology and molecular biology of cave species and their close surface relatives is a powerful tool for studying regress...Eye degeneration is a common troglomorphic character of cave-dwelling organisms. Comparing the morphology and molecular biology of cave species and their close surface relatives is a powerful tool for studying regressive eye evolution and other adaptive phenotypes. We compared two co-occurring and closely-related species of the fish genus Sinocyclocheilus, which is endemic to China and includes both surface- and cave-dwelling species. Sinocyclocheilus tileihornes, a cave species, had smaller eyes than Sinocyclocheilus angustiporus, a surface species. Histological and immunohistochemical analyses revealed that the cave- fish had shorter cones and more disorderly rods than did the surface-dwelling species. Using quantitative PCR and in situ hybri- dization, we found that rhodopsin and a long-wavelength sensitive opsin had significantly lower expression levels in the cavefish. Furthermore, one of two short-wavelength-sensitive opsins was expressed at significantly higher levels in the cavefish. Changes in the expression ofopsin genes may have played a role in the degeneration of cavefish eyes [Current Zoology 59 (2): 170-174, 2013].展开更多
Planarians provide the ideal model for studying eye development,with their simple eye structure and exceptionally rapid regeneration.Here,we observed the eye morphogenesis,photophobic behavior,spectral sensitivity and...Planarians provide the ideal model for studying eye development,with their simple eye structure and exceptionally rapid regeneration.Here,we observed the eye morphogenesis,photophobic behavior,spectral sensitivity and expression pattern of Djopsin in the freshwater planarian Dugesia japonica.The results showed that:(i)Djopsin encoding the putative protein belonged to the rhabdomeric opsins group and displayed high conservation during animal evolution;(ii)planarians displayed diverse photophobic response to different visible wavelengths and were more sensitive to light blue(495 nm)and yellow(635 nm);(iii)the morphogenesis and functional recovery of eyes were related to the expression pattern of Djopsin during head regeneration;and(iv)Djopsin gene plays a major role in functional recovery during eye regeneration and visual system maintenance in adult planarians.展开更多
G_(q)-coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca^(2+)signals.There is a strong need for an optogenetic tool that enables powerful experimental contr...G_(q)-coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca^(2+)signals.There is a strong need for an optogenetic tool that enables powerful experimental control over G_(q) signaling.Here,we present chicken opsin 5(cOpn5)as the long sought-after,single-component optogenetic tool that mediates ultra-sensitive optical control of intracellular G_(q) signaling with high temporal and spatial resolution.Expressing cOpn5 in HEK 293T cells and primary mouse astrocytes enables blue light-triggered,G_(q)-dependent Ca^(2+) release from intracellular stores and protein kinase C activation.Strong Ca^(2+) transients were evoked by brief light pulses of merely 10 ms duration and at 3 orders lower light intensity of that for common optogenetic tools.Photostimulation of cOpn5-expressing cells at the subcellular and single-cell levels generated fast intracellular Ca^(2+)transition,thus demonstrating the high spatial precision of cOpn5 optogenetics.The cOpn5-mediated optogenetics could also be applied to activate neurons and control animal behavior in a circuit-dependent manner.cOpn5 optogenetics may find broad applications in studying the mechanisms and functional relevance of G_(q) signaling in both non-excitable cells and excitable cells in all major organ systems.展开更多
基金Financial support was provided by the National Natural Science Foundation of China(NSFC)(Grant No.31672269,31000949 to J.YAN)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJA330001 to P.LI)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Top-Notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP,PPZY2015B117)。
文摘Reptiles are the most morphologically and physiologically diverse tetrapods,with the squamates having the most diverse habitats.Lizard is an important model system for understanding the role of visual ecology,phylogeny and behavior on the structure of visual systems.In this study,we compared three opsin genes(RH2,LWS and SWS1)among 49 reptile species to detect positively selected genes as well as amino acid sites.Our results indicated that visual opsin genes have undergone divergent selection pressures in all lizards and RH2 and LWS suffered stronger positive selection than SWS1.Twelve positively selected sites were picked out for RH2 and LWS.Moreover,many diagnostic sites were found between geckos and non-gecko lizards,most of which were located near the positively selected sites and some of them have already been reported to be responsible for significant shifts of the wavelength of maximum absorption(λ_(max)).The results indicated that the gecko lineage accelerated the evolution of these genes to adapt to the dim-light environment or nocturnality as well as the switch between nocturnality and diurnality.
基金supported by Guangzhou Key Projects of Brain Science and Brain-Like Intelligence Technology,No.20200730009 (to YX)the National Natural Science Foundation of China,No.82074169 (to XM)+2 种基金the Guangdong Basic and Applied Basic Research Foundation,No.2021A1515012473 (to XM)Project of Administration of Traditional Chinese Medicine of Guangdong Province,No.20202045 (to XM)Aier Eye Hospital Group,No.AF2019001 (to ST,KFS,YX,XM)。
文摘Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum(L. barbarum) polysaccharide(LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide(Lb GP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of Lb GP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of Lb GP as a protective pre-treatment on days 1–7;intraperitoneal administration of 40 mg/kg N-methylN-nitrosourea to induce photoreceptor injury on day 7;and continuation of orally administered Lb GP on days 8–14. Treatment with Lb GP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. Lb GP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, Lb GP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.
文摘Eye degeneration is a common troglomorphic character of cave-dwelling organisms. Comparing the morphology and molecular biology of cave species and their close surface relatives is a powerful tool for studying regressive eye evolution and other adaptive phenotypes. We compared two co-occurring and closely-related species of the fish genus Sinocyclocheilus, which is endemic to China and includes both surface- and cave-dwelling species. Sinocyclocheilus tileihornes, a cave species, had smaller eyes than Sinocyclocheilus angustiporus, a surface species. Histological and immunohistochemical analyses revealed that the cave- fish had shorter cones and more disorderly rods than did the surface-dwelling species. Using quantitative PCR and in situ hybri- dization, we found that rhodopsin and a long-wavelength sensitive opsin had significantly lower expression levels in the cavefish. Furthermore, one of two short-wavelength-sensitive opsins was expressed at significantly higher levels in the cavefish. Changes in the expression ofopsin genes may have played a role in the degeneration of cavefish eyes [Current Zoology 59 (2): 170-174, 2013].
基金supported by grants from the National Natural Science Foundation of China(Nos.31570376,31471965 and 31170357)the PhD Programs Foundation of the Ministry of Education of China(No.200804760003)+2 种基金the Innovation Foundation of Henan Province(No.2005126)the Basic and Advanced Technique Research Program of Technology Department of Henan Province(Nos.122300410142,142300410160)the College Students’Innovative Project(No.201410476066).
文摘Planarians provide the ideal model for studying eye development,with their simple eye structure and exceptionally rapid regeneration.Here,we observed the eye morphogenesis,photophobic behavior,spectral sensitivity and expression pattern of Djopsin in the freshwater planarian Dugesia japonica.The results showed that:(i)Djopsin encoding the putative protein belonged to the rhabdomeric opsins group and displayed high conservation during animal evolution;(ii)planarians displayed diverse photophobic response to different visible wavelengths and were more sensitive to light blue(495 nm)and yellow(635 nm);(iii)the morphogenesis and functional recovery of eyes were related to the expression pattern of Djopsin during head regeneration;and(iv)Djopsin gene plays a major role in functional recovery during eye regeneration and visual system maintenance in adult planarians.
基金supported by Ministry of Science and Technology China Brain Initiative Grant(2021ZD0202803)the Research Unit of Medical Neurobiology at Chinese Academy of Medical Sciences(2019RU003)Beijing Municipal Government。
文摘G_(q)-coupled receptors regulate numerous physiological processes by activating enzymes and inducing intracellular Ca^(2+)signals.There is a strong need for an optogenetic tool that enables powerful experimental control over G_(q) signaling.Here,we present chicken opsin 5(cOpn5)as the long sought-after,single-component optogenetic tool that mediates ultra-sensitive optical control of intracellular G_(q) signaling with high temporal and spatial resolution.Expressing cOpn5 in HEK 293T cells and primary mouse astrocytes enables blue light-triggered,G_(q)-dependent Ca^(2+) release from intracellular stores and protein kinase C activation.Strong Ca^(2+) transients were evoked by brief light pulses of merely 10 ms duration and at 3 orders lower light intensity of that for common optogenetic tools.Photostimulation of cOpn5-expressing cells at the subcellular and single-cell levels generated fast intracellular Ca^(2+)transition,thus demonstrating the high spatial precision of cOpn5 optogenetics.The cOpn5-mediated optogenetics could also be applied to activate neurons and control animal behavior in a circuit-dependent manner.cOpn5 optogenetics may find broad applications in studying the mechanisms and functional relevance of G_(q) signaling in both non-excitable cells and excitable cells in all major organ systems.