Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ...Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation.展开更多
为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶...为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶段增加反向学习,增强种群多样性.根据算法各个阶段不同特征引入衰减因子,平衡全局和局部勘探能力.选取8个高维函数和23个不同特征的优化函数对算法性能进行测试,进一步使用收敛性分析,寻优成功率,CPU时间,Wilcoxon秩和检验来评估改进算法,实验结果表明,ORGWO算法在求解高维问题上具有较好的精度,鲁棒性和更快的收敛速度.展开更多
In this paper, two PVD-type algorithms are proposed for solving inseparable linear constraint optimization. Instead of computing the residual gradient function, the new algorithm uses the reduced gradients to construc...In this paper, two PVD-type algorithms are proposed for solving inseparable linear constraint optimization. Instead of computing the residual gradient function, the new algorithm uses the reduced gradients to construct the PVD directions in parallel computation, which can greatly reduce the computation amount each iteration and is closer to practical applications for solve large-scale nonlinear programming. Moreover, based on an active set computed by the coordinate rotation at each iteration, a feasible descent direction can be easily obtained by the extended reduced gradient method. The direction is then used as the PVD direction and a new PVD algorithm is proposed for the general linearly constrained optimization. And the global convergence is also proved.展开更多
文摘Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation.
文摘为求解高维优化问题,提出基于反向学习和衰减因子的灰狼优化算法(grey wolf algorithm based on opposition learning and reduction factor,ORGWO).设计一种灰狼反向学习模型,模型考虑问题搜索边界信息和种群历史搜索信息,初始种群阶段增加反向学习,增强种群多样性.根据算法各个阶段不同特征引入衰减因子,平衡全局和局部勘探能力.选取8个高维函数和23个不同特征的优化函数对算法性能进行测试,进一步使用收敛性分析,寻优成功率,CPU时间,Wilcoxon秩和检验来评估改进算法,实验结果表明,ORGWO算法在求解高维问题上具有较好的精度,鲁棒性和更快的收敛速度.
基金Supported by the National Natural Science Foundation of China(No.11101420,11331012,71271204)
文摘In this paper, two PVD-type algorithms are proposed for solving inseparable linear constraint optimization. Instead of computing the residual gradient function, the new algorithm uses the reduced gradients to construct the PVD directions in parallel computation, which can greatly reduce the computation amount each iteration and is closer to practical applications for solve large-scale nonlinear programming. Moreover, based on an active set computed by the coordinate rotation at each iteration, a feasible descent direction can be easily obtained by the extended reduced gradient method. The direction is then used as the PVD direction and a new PVD algorithm is proposed for the general linearly constrained optimization. And the global convergence is also proved.