Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aqu...Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aquatic environment.Spectrophotometric devices measure the spectrum of weakening of light through the aquatic environment.Spectroellipsometric devices receive spectra in vertical and horizontal polarizations.The presented article develops an adaptive optical hardware and image system for monitoring water bodies.The system is combined.It consists of 2 parts:1)automated spectrophotometer-refractometer,and 2)adaptive spectroellipsometer.The system is equipped with a corresponding algorithmic and software,including algorithms for identifying spectral curves,databases and knowledge of spectral curves algorithms for solving reverse problems.The presented system is original since it differs from modern foreign systems by a new method of spectrophotometric and spectroellipsometric measurements,an original elemental base of polarization optics and a comprehensive mathematical approach to assessing the quality of a water body.There are no rotating polarization elements in the system.Therefore,this makes it possible to increase the signal-to-noise ratio and,as a result,improve measurement stability and simplify multichannel spectrophotometers and spectroellipsometers.The proposed system can be used in various water systems where it is necessary to assess water quality or identify the presence of a certain set of chemical elements.展开更多
A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency o...A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency of the correspondingly fundamental OEO could be adjusted by tuning the bandwidth and central frequency of the OBPF, which could also be regarded as a photonic-assisted tunable microwave filter. The frequency tuning range of the FD-OEO covers from 9.5 to 32.8?GHz, and the single sideband phase noise of the fundamental signal is lower than -100dBc/Hz at an offset of 10?kHz. Moreover, the frequency stability of the generated signal is investigated by measuring its Allan deviation. The Allan deviation of the generated fundamental signal at 10?GHz is 2.39×10^-9.展开更多
A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intens...A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intensity excitation meth- ods used in SERF magnetometer, the light polarization modulation method has a high stability in low-frequency range, which indicates a more accurate transverse relaxation measurement.展开更多
This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of po...This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40×43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift- keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.展开更多
Just like an electronic diode that allows the electrical current to flow in one direction only, a kind of chiral metamaterial structure with a similar functionality for the electromagnetic wave is proposed. The design...Just like an electronic diode that allows the electrical current to flow in one direction only, a kind of chiral metamaterial structure with a similar functionality for the electromagnetic wave is proposed. The designed nanostructure that consists of twisted metallic split-ring resonators on both sides of a dielectric substrate achieves asymmetric transmission for a forward and backward propagating linearly polarized wave by numerical simulation in near-infrared band. Difference in transmission efficiency of the optimized structure between the same polarized waves incident from opposite directions can reach a maximum at the communication wavelength (1.55 μm). Moreover, the simulation results of this structure also exhibit strong optical activity and circular dichroism.展开更多
The intensity distribution in the focal region of a high-NA lens for the incident azimuthally polarized multi Gaussian beam transmitted through a multi belt spiral phase hologram is studied on the basis of the vector ...The intensity distribution in the focal region of a high-NA lens for the incident azimuthally polarized multi Gaussian beam transmitted through a multi belt spiral phase hologram is studied on the basis of the vector diffraction theory. Here we report a new method used to generate a needle of transversely polarized light beam with sub diffraction beam size of 0.366A that propagates without divergence over a long distance of about 22A in free space. We also expect that such a light needle of transversely polarized beam may find its applications in utilizing optical materials or instruments responsive to the transversal field only.展开更多
The properties of polar optical phonon vibrations in a quasi-zero- dimensional (QOD) anisotropic wurtzite cylindrical quantum dot (QD) are analyzed based on the dielectric continuum model and Loudon's uniaxial cr...The properties of polar optical phonon vibrations in a quasi-zero- dimensional (QOD) anisotropic wurtzite cylindrical quantum dot (QD) are analyzed based on the dielectric continuum model and Loudon's uniaxial crystal model. The analytical electrostatic potentials of the phonon vibrations in the systems are deduced and solved exactly. The result shows that there exist four types of polar mixing optical phonon modes in the QOD wurtzite cylindrical QD systems. The dispersive equations and electron-phonon coupling function for the quasi-confined-half-space (QC-HS) mixing modes are derived and discussed. It is found that once the radius or the height of the QD approach infinity, the dispersive equations of the QC-HS mixing modes in the QOD cylindrical QD can naturally reduce to those of the QC and HS modes in Q2D QWs or Q1D QWWs systems. This has been analyzed reasonably from both of physicM and mathematical viewpoints.展开更多
A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First,optical anisotropic transmittance images of polycrystalline zinc phthalocyanine(Zn Pc) films vac...A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First,optical anisotropic transmittance images of polycrystalline zinc phthalocyanine(Zn Pc) films vacuum deposited by weak epitaxial growth(WEG) method were acquired with polarized optical microscopy(POM). Then morphology properties including crystal grain size, distribution, relative orientation, and crystallinity were derived from these images by fitting with a transition dipole model. At last, atomic force microscopy(AFM) imaging was carried out to confirm the fitting and serve as absolute references. This method can be readily generalized to other organic polycrystalline films, thus providing an efficient way to access the large-scale morphologic properties of organic polycrystalline films, which may prove to be useful in industry as a film quality monitoring method.展开更多
A model of an optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis is presented. Different coordinate frames for nuclear spin polarization vector are introduced, and ...A model of an optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis is presented. Different coordinate frames for nuclear spin polarization vector are introduced, and theoretical calculation is conducted to analyze this model. We demonstrate that when the optical pumping nuclear magnetic resonance system rotates in a plane parallel to the quantization axis, it will maintain a steady state with respect to the quantization axis which is independent of rotational speed and direction.展开更多
Four different states of Si15Sb85 and Ge2Sb2Te5 phase change memory thin films are obtained by crystallization degree modulation through laser initialization at different powers or annealing at different temperatures....Four different states of Si15Sb85 and Ge2Sb2Te5 phase change memory thin films are obtained by crystallization degree modulation through laser initialization at different powers or annealing at different temperatures. The polarization characteristics of these two four-level phase change recording media are analyzed systematically. A simple and effective readout scheme is then proposed, and the readout signal is numerically simulated. The results show that a high-contrast polarization readout can be obtained in an extensive wavelength range for the four-level phase change recording media using common phase change materials. This study will help in-depth understanding of the physical mechanisms and provide technical approaches to multilevel phase change recording.展开更多
Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exh...Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exhibits outstanding in-plane optical anisotropy with distinct linear dichroism and optical birefringence in the visible region, which are superior characteristics for ultrathin polarizing optics. Herein, taking advantage of polarized Raman spectroscopy, we demonstrate that layered BP with a nanometer thickness can remarkably alter the polarization state of a linearly-polarized laser and behave as an ultrathin optical polarization element in a BP-Bi2Se3 stacking structure by inducing the exceptionally polarized Raman scattering of isotropic Bi2Se3. Our findings provide a promising alternative for designing novel polarization optics based on 2D anisotropic materials, which can be easily integrated in micro- sized all-optical and optoelectronic devices.展开更多
A new kind of tunable optical filter is proposed for DWDM optical communication application. It is based on cascaded polarization interference filter (PIF). The period and bandpass width of each PIF are decided by its...A new kind of tunable optical filter is proposed for DWDM optical communication application. It is based on cascaded polarization interference filter (PIF). The period and bandpass width of each PIF are decided by its optical path difference between o-ray and e-ray (OPDOE). When their OPDOEs are proportionately designed, the tuning range and bandpass width depend on OPDOE in the first and the last PIF, respectively. The tuning range, bandpass width and crosstalk are independent each other. The crosstalk is related to the OPDOE ratios among PIFs and can be suppressed by designing the PIF's OPDOE. A set of OPDOE is suggested that are l1, 2 × l1, 22 ×l1, 23 ×l1, 24 ×l1, ..., 2N-4 × l1, 15 × 2N-7 ×l1, 10 × 2N-6 × l1 and 2N-2 ×l1 from the first to the last. This suggested OPDOEs can yield -50-dB crosstalk for any tuning range and bandpass width. The insert loss is less than 1 dB. As its loose alignment requirement, there is no limitation on cascaded PIF number. When 11 PIFs are cascaded, it can achieve 170-nm tuning range, -50-dB crosstalk, bandpass width applicable to 25-GHz channel spacing and 1 dB insert loss.展开更多
Background:The retina has been used to study the pathophysiology of multiple sclerosis(MS).Peripapillary retinal nerve fiber layer(pRNFL)thinning has been suggested as an ocular biomarker of neurodegeneration in MS.Th...Background:The retina has been used to study the pathophysiology of multiple sclerosis(MS).Peripapillary retinal nerve fiber layer(pRNFL)thinning has been suggested as an ocular biomarker of neurodegeneration in MS.The goal of this project was to determine the birefringence of the pRNFL by measuring the fiber birefringence using polarization sensitive optical coherence tomography(PS-OCT).Methods:Sixty-six MS patients without history of optic neuritis(age:39.9±11.0 yrs.old,53 females and 13 males)and 66 age-and gender-matched normal controls(age:40.7±11.4 yrs.old)were recruited.Custom built PS-OCT was used to measure phase retardation per unit depth(PR/UD,proportional to the birefringence)and pRNFL thickness in each quadrant of the pRNFL.In addition,clinical manifestation was used to correlate with the pRNFL birefringence.Results:The pRNFL was thinner in the temporal and inferior quadrants in MS patients compared with normal controls(P<0.05).The PR/UD of the pRNFL was significantly decreased in MS patients(P<0.05)in all quadrants except for the nasal quadrant.In both groups,the PR/UD from all four quadrants was not related to the averaged pRNFL thickness(P>0.05).In MS patients,the PR/UD was not related to the expanded disability status scale(EDSS)nor disease duration(r ranged from−0.17 to 0.02,P>0.05).Conclusion:This is the first study using PS-OCT to study the pRNFL birefringence in MS patients.Decreased birefringence of the pRNFL may indicate microtubule abnormality,and could be a potential biomarker for detecting early neurodegeneration in MS.展开更多
Polarization-sensitive optical coherence tomo- graphy (PS-OCT) enables depth-resolved mapping of sample polarization information, such as phase-retardation and optical axis orientation, which is particularly useful ...Polarization-sensitive optical coherence tomo- graphy (PS-OCT) enables depth-resolved mapping of sample polarization information, such as phase-retardation and optical axis orientation, which is particularly useful when the nano-scale organization of tissue that are difficult to be observed in the intensity images of a regular optical coherence tomography (OCT). In this review, we survey two types of methods and systems of PS-OCT. The first type is PS-OCT with single input polarization state, which contain bulk optics or polarization maintaining fiber (PMF) based systems and single-mode fiber (SMF) based systems. The second type is PS-OCT with two different input polarization states, which contain SMF based systems and PMF based systems, through either time, frequency, or depth multiplexing. In addition, representa- tive biomedical applications using PS-OCT, such as retinal imaging, skin cancer detection, and brain mapping, are demonstrated.展开更多
We propose and experimentally demonstrate a novel scheme to realize polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission over fiber, wireless and fiber at Wband (75-110 GH...We propose and experimentally demonstrate a novel scheme to realize polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission over fiber, wireless and fiber at Wband (75-110 GHz). The generation of polarization multiplexing millimeter-wave (mm-wave) wireless signal is based on the photonic technique. After 20-km fiber transmission, polarization diversity and heterodyne beating are implemented to convert the polarization components of the polarization-multiplexing signals from the optical baseband to W-band so that up to 16 Gb/s mm-wave signals can be delivered over 2-m 2~2 multiple-input multiple-output (MIMO) wireless link. At the receiver base station (BS), polarization combination reconstructs the PDM-QPSK signal which is then launched into another 20-km fiber. In the experiment, coherent detection is introduced to improve receiver sensitivity and constant modulus algorithm (CMA) is applied for polarization de-multiplexing. The bit-error-ratio (BER) for 16-Gb/s PDM- QPSK signal delivery is below the forward-error-correction (FEC) threshold of 3.8× 10-3 with the optical signal-to-noise ratio (OSNR) above 11.8 dB.展开更多
Due to the large exciton binding energy,two-dimensional(2D)transition metal dichalcogenides(TMDCs)provide an ideal platform for studying excitonic states and related photonics and optoelectronics.Polarization states l...Due to the large exciton binding energy,two-dimensional(2D)transition metal dichalcogenides(TMDCs)provide an ideal platform for studying excitonic states and related photonics and optoelectronics.Polarization states lead to distinct light-matter interactions which are of great importance for device applications.In this work,we study polarized photoluminescence spectra from intralayer exciton and indirect exciton in WS_(2) and WSe_(2) atomic layers,and interlayer exciton in WS_(2)/WSe_(2) heterostructures by radially and azimuthally polarized cylindrical vector laser beams.We demonstrated the same in-plane and out-of-plane polarization behavior from the intralayer and indirect exciton.Moreover,with these two laser modes,we obtained interlayer exciton in WS_(2)/WSe_(2) heterostructures with stronger out-of-plane polarization,due to the formation of vertical electric dipole moment.展开更多
A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system con...A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system confirm low optical loss and environmental stabilities.展开更多
Two new series (A & B) of three materials each based on the aroyl hydrazinato-nickel (II) complex were synthesized and characterized. The core molecule in these series consists of two 4-benzoyloxy benzylidene moie...Two new series (A & B) of three materials each based on the aroyl hydrazinato-nickel (II) complex were synthesized and characterized. The core molecule in these series consists of two 4-benzoyloxy benzylidene moieties and two benzene rings attached at the azomethine moiety. These latter benzene rings have one or two alkoxy chains comprised of either 10, 12, 16 or 18 carbon atoms. The characterization of these two series by polarized optical microscopy and differential scanning calorimetry is described herein. Upon cooling from the Isotropic phase, three of the six materials display a monophasic columnar phase and the other three possess a biphasic nematic and columnar phases. Upon heating, all six materials have a clearance point at high temperatures without displaying mesomorphic behavior. In series B mesogens, it was observed that the longer the hydrocarbon tail length, the lower the clearance point.展开更多
The mesogenic properties of a homologous series of aromatic ester materials are investigated. Single tail and double tail materials were synthesized to compare with other series we prepared and published earlier. The ...The mesogenic properties of a homologous series of aromatic ester materials are investigated. Single tail and double tail materials were synthesized to compare with other series we prepared and published earlier. The phase sequences and transition temperatures were obtained by polarized light microscopy and differential scanning calorimetry. Only the single tail materials with the ester attached to naphthalene at position 2 display mesogenicbehavior. Two materials (ZH 29 & ZH 32) possess a monophasic nematic phase and another two materials (ZH 14 & ZH 35) display biphasic nematic and smectic (A) phases.展开更多
The optical properties of a three-arm plasmonic nanoantenna with and without broken symmetry were analyzed in detail. For the symmetrical structure, the local electric field can be significantly enhanced and well conf...The optical properties of a three-arm plasmonic nanoantenna with and without broken symmetry were analyzed in detail. For the symmetrical structure, the local electric field can be significantly enhanced and well confined within the feed gap, whilst the extinction spectrum illustrates polarization independence. With broken symmetry, multi-wavelength resonances are observed due to the single dipole resonance and dipole–dipole coupling effect, and wide tunability is also available through minor structural adjustment. Especially when illuminated by a circularly polarized light beam, the extinction and the electric field distribution can be effectively modulated by just varying the incident wavelength.展开更多
基金Supported By The Russian Science Foundation Grant No.23-21-00115,https://rscf.ru/en/project/23-21-00115/.
文摘Multi-channel polarization optical technology is increasingly used for prompt monitoring of water systems.Optical devices during the assessment of water quality determine the intensity of light through the studied aquatic environment.Spectrophotometric devices measure the spectrum of weakening of light through the aquatic environment.Spectroellipsometric devices receive spectra in vertical and horizontal polarizations.The presented article develops an adaptive optical hardware and image system for monitoring water bodies.The system is combined.It consists of 2 parts:1)automated spectrophotometer-refractometer,and 2)adaptive spectroellipsometer.The system is equipped with a corresponding algorithmic and software,including algorithms for identifying spectral curves,databases and knowledge of spectral curves algorithms for solving reverse problems.The presented system is original since it differs from modern foreign systems by a new method of spectrophotometric and spectroellipsometric measurements,an original elemental base of polarization optics and a comprehensive mathematical approach to assessing the quality of a water body.There are no rotating polarization elements in the system.Therefore,this makes it possible to increase the signal-to-noise ratio and,as a result,improve measurement stability and simplify multichannel spectrophotometers and spectroellipsometers.The proposed system can be used in various water systems where it is necessary to assess water quality or identify the presence of a certain set of chemical elements.
基金Supported by the National Natural Science Foundation of China under Grant No 61675196the National Basic Research Program of China under Grant No 2014CB340102+1 种基金the National High-Tech Research and Development Program of China under Grant No 2015AA016903the Open Research of Beijing University of Posts and Telecommunications under Grant No IOOC2013A002
文摘A wideband tunable frequency-doubling optoelectronic oscillator (FD-OEO) is proposed and experimentally demonstrated based on a polarization modulator and an optical bandpass filter (OBPF). The central frequency of the correspondingly fundamental OEO could be adjusted by tuning the bandwidth and central frequency of the OBPF, which could also be regarded as a photonic-assisted tunable microwave filter. The frequency tuning range of the FD-OEO covers from 9.5 to 32.8?GHz, and the single sideband phase noise of the fundamental signal is lower than -100dBc/Hz at an offset of 10?kHz. Moreover, the frequency stability of the generated signal is investigated by measuring its Allan deviation. The Allan deviation of the generated fundamental signal at 10?GHz is 2.39×10^-9.
基金Project supported by the National Natural Science Foundation of China(Grant No.61227902)the National Key R&D Program of China(Grant No.2017YFB0503100)the Natural Science Foundation of Beijing Municipality,China(Grant No.4162038)
文摘A transverse relaxation determination of spin-exchange relaxation free (SERF) magnetometer based on polarization modulation technique is proposed. Compared with the radio-frequency (RF) excitation and light intensity excitation meth- ods used in SERF magnetometer, the light polarization modulation method has a high stability in low-frequency range, which indicates a more accurate transverse relaxation measurement.
基金Project supported by the Huawei Technology Project (Grant No.YBON2008014)the National "863" High Technology Projects (Grant No.2009AA01Z224)
文摘This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40×43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift- keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.
基金Project supported by the National Natural Science Foundation of China(Grant No.61078060)the Fund from the Ningbo Optoelectronic Materials and Devices Creative Team,China(Grant No.2009B21007)partially sponsored by K.C.Wong Magna Fund in Ningbo University
文摘Just like an electronic diode that allows the electrical current to flow in one direction only, a kind of chiral metamaterial structure with a similar functionality for the electromagnetic wave is proposed. The designed nanostructure that consists of twisted metallic split-ring resonators on both sides of a dielectric substrate achieves asymmetric transmission for a forward and backward propagating linearly polarized wave by numerical simulation in near-infrared band. Difference in transmission efficiency of the optimized structure between the same polarized waves incident from opposite directions can reach a maximum at the communication wavelength (1.55 μm). Moreover, the simulation results of this structure also exhibit strong optical activity and circular dichroism.
文摘The intensity distribution in the focal region of a high-NA lens for the incident azimuthally polarized multi Gaussian beam transmitted through a multi belt spiral phase hologram is studied on the basis of the vector diffraction theory. Here we report a new method used to generate a needle of transversely polarized light beam with sub diffraction beam size of 0.366A that propagates without divergence over a long distance of about 22A in free space. We also expect that such a light needle of transversely polarized beam may find its applications in utilizing optical materials or instruments responsive to the transversal field only.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 60276004 and 60390073 and the Natural Science Foundation of Guangzhou Education Bureau under Grant No. 2060
文摘The properties of polar optical phonon vibrations in a quasi-zero- dimensional (QOD) anisotropic wurtzite cylindrical quantum dot (QD) are analyzed based on the dielectric continuum model and Loudon's uniaxial crystal model. The analytical electrostatic potentials of the phonon vibrations in the systems are deduced and solved exactly. The result shows that there exist four types of polar mixing optical phonon modes in the QOD wurtzite cylindrical QD systems. The dispersive equations and electron-phonon coupling function for the quasi-confined-half-space (QC-HS) mixing modes are derived and discussed. It is found that once the radius or the height of the QD approach infinity, the dispersive equations of the QC-HS mixing modes in the QOD cylindrical QD can naturally reduce to those of the QC and HS modes in Q2D QWs or Q1D QWWs systems. This has been analyzed reasonably from both of physicM and mathematical viewpoints.
基金Project supported by the National Natural Science Foundation of China(Grant No.20933010)the National Basic Research Program of China(Grant No.2013CB834800)
文摘A new method to visualize the large-scale crystal grain morphology of organic polycrystalline films is proposed. First,optical anisotropic transmittance images of polycrystalline zinc phthalocyanine(Zn Pc) films vacuum deposited by weak epitaxial growth(WEG) method were acquired with polarized optical microscopy(POM). Then morphology properties including crystal grain size, distribution, relative orientation, and crystallinity were derived from these images by fitting with a transition dipole model. At last, atomic force microscopy(AFM) imaging was carried out to confirm the fitting and serve as absolute references. This method can be readily generalized to other organic polycrystalline films, thus providing an efficient way to access the large-scale morphologic properties of organic polycrystalline films, which may prove to be useful in industry as a film quality monitoring method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475192)
文摘A model of an optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis is presented. Different coordinate frames for nuclear spin polarization vector are introduced, and theoretical calculation is conducted to analyze this model. We demonstrate that when the optical pumping nuclear magnetic resonance system rotates in a plane parallel to the quantization axis, it will maintain a steady state with respect to the quantization axis which is independent of rotational speed and direction.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61178059 and 61137002)the Key Program of the Science and Technology Commission of Shanghai Municipality,China(Grant No.11jc1413300)
文摘Four different states of Si15Sb85 and Ge2Sb2Te5 phase change memory thin films are obtained by crystallization degree modulation through laser initialization at different powers or annealing at different temperatures. The polarization characteristics of these two four-level phase change recording media are analyzed systematically. A simple and effective readout scheme is then proposed, and the readout signal is numerically simulated. The results show that a high-contrast polarization readout can be obtained in an extensive wavelength range for the four-level phase change recording media using common phase change materials. This study will help in-depth understanding of the physical mechanisms and provide technical approaches to multilevel phase change recording.
文摘Manipulating the polarization of light at the nanoscale is essential for the development of nano-optical devices. Owing to its corrugated honeycomb structure, two-dimensional (2D) layered black phosphorus (BP) exhibits outstanding in-plane optical anisotropy with distinct linear dichroism and optical birefringence in the visible region, which are superior characteristics for ultrathin polarizing optics. Herein, taking advantage of polarized Raman spectroscopy, we demonstrate that layered BP with a nanometer thickness can remarkably alter the polarization state of a linearly-polarized laser and behave as an ultrathin optical polarization element in a BP-Bi2Se3 stacking structure by inducing the exceptionally polarized Raman scattering of isotropic Bi2Se3. Our findings provide a promising alternative for designing novel polarization optics based on 2D anisotropic materials, which can be easily integrated in micro- sized all-optical and optoelectronic devices.
文摘A new kind of tunable optical filter is proposed for DWDM optical communication application. It is based on cascaded polarization interference filter (PIF). The period and bandpass width of each PIF are decided by its optical path difference between o-ray and e-ray (OPDOE). When their OPDOEs are proportionately designed, the tuning range and bandpass width depend on OPDOE in the first and the last PIF, respectively. The tuning range, bandpass width and crosstalk are independent each other. The crosstalk is related to the OPDOE ratios among PIFs and can be suppressed by designing the PIF's OPDOE. A set of OPDOE is suggested that are l1, 2 × l1, 22 ×l1, 23 ×l1, 24 ×l1, ..., 2N-4 × l1, 15 × 2N-7 ×l1, 10 × 2N-6 × l1 and 2N-2 ×l1 from the first to the last. This suggested OPDOEs can yield -50-dB crosstalk for any tuning range and bandpass width. The insert loss is less than 1 dB. As its loose alignment requirement, there is no limitation on cascaded PIF number. When 11 PIFs are cascaded, it can achieve 170-nm tuning range, -50-dB crosstalk, bandpass width applicable to 25-GHz channel spacing and 1 dB insert loss.
基金Supported by the National Multiple Sclerosis Society,NIH Center Grant P30 EY014801a grant from Research to Prevent Blindness(RPB).
文摘Background:The retina has been used to study the pathophysiology of multiple sclerosis(MS).Peripapillary retinal nerve fiber layer(pRNFL)thinning has been suggested as an ocular biomarker of neurodegeneration in MS.The goal of this project was to determine the birefringence of the pRNFL by measuring the fiber birefringence using polarization sensitive optical coherence tomography(PS-OCT).Methods:Sixty-six MS patients without history of optic neuritis(age:39.9±11.0 yrs.old,53 females and 13 males)and 66 age-and gender-matched normal controls(age:40.7±11.4 yrs.old)were recruited.Custom built PS-OCT was used to measure phase retardation per unit depth(PR/UD,proportional to the birefringence)and pRNFL thickness in each quadrant of the pRNFL.In addition,clinical manifestation was used to correlate with the pRNFL birefringence.Results:The pRNFL was thinner in the temporal and inferior quadrants in MS patients compared with normal controls(P<0.05).The PR/UD of the pRNFL was significantly decreased in MS patients(P<0.05)in all quadrants except for the nasal quadrant.In both groups,the PR/UD from all four quadrants was not related to the averaged pRNFL thickness(P>0.05).In MS patients,the PR/UD was not related to the expanded disability status scale(EDSS)nor disease duration(r ranged from−0.17 to 0.02,P>0.05).Conclusion:This is the first study using PS-OCT to study the pRNFL birefringence in MS patients.Decreased birefringence of the pRNFL may indicate microtubule abnormality,and could be a potential biomarker for detecting early neurodegeneration in MS.
文摘Polarization-sensitive optical coherence tomo- graphy (PS-OCT) enables depth-resolved mapping of sample polarization information, such as phase-retardation and optical axis orientation, which is particularly useful when the nano-scale organization of tissue that are difficult to be observed in the intensity images of a regular optical coherence tomography (OCT). In this review, we survey two types of methods and systems of PS-OCT. The first type is PS-OCT with single input polarization state, which contain bulk optics or polarization maintaining fiber (PMF) based systems and single-mode fiber (SMF) based systems. The second type is PS-OCT with two different input polarization states, which contain SMF based systems and PMF based systems, through either time, frequency, or depth multiplexing. In addition, representa- tive biomedical applications using PS-OCT, such as retinal imaging, skin cancer detection, and brain mapping, are demonstrated.
基金supported by the National Natural Science Foundation of China(Nos.61177071and 61250018)the National"863"Program of China(Nos.2011AA010302 and 2012AA011302)+1 种基金the National Key Technology R&D Program of China(No.2012BAH18B00)the International Cooperation Program of Shanghai Science and Technology Association(No.12510705600)
文摘We propose and experimentally demonstrate a novel scheme to realize polarization-division-multiplexing quadrature-phase-shift-keying (PDM-QPSK) signal transmission over fiber, wireless and fiber at Wband (75-110 GHz). The generation of polarization multiplexing millimeter-wave (mm-wave) wireless signal is based on the photonic technique. After 20-km fiber transmission, polarization diversity and heterodyne beating are implemented to convert the polarization components of the polarization-multiplexing signals from the optical baseband to W-band so that up to 16 Gb/s mm-wave signals can be delivered over 2-m 2~2 multiple-input multiple-output (MIMO) wireless link. At the receiver base station (BS), polarization combination reconstructs the PDM-QPSK signal which is then launched into another 20-km fiber. In the experiment, coherent detection is introduced to improve receiver sensitivity and constant modulus algorithm (CMA) is applied for polarization de-multiplexing. The bit-error-ratio (BER) for 16-Gb/s PDM- QPSK signal delivery is below the forward-error-correction (FEC) threshold of 3.8× 10-3 with the optical signal-to-noise ratio (OSNR) above 11.8 dB.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91850116,51772084,52022029,and U19A2090)Hunan Provincial Natural Science Foundation of China(Grant Nos.2018RS3051 and 2018WK4004)the Key Program of the Hunan Provincial Science and Technology Department,China(Grant No.2019XK2001).
文摘Due to the large exciton binding energy,two-dimensional(2D)transition metal dichalcogenides(TMDCs)provide an ideal platform for studying excitonic states and related photonics and optoelectronics.Polarization states lead to distinct light-matter interactions which are of great importance for device applications.In this work,we study polarized photoluminescence spectra from intralayer exciton and indirect exciton in WS_(2) and WSe_(2) atomic layers,and interlayer exciton in WS_(2)/WSe_(2) heterostructures by radially and azimuthally polarized cylindrical vector laser beams.We demonstrated the same in-plane and out-of-plane polarization behavior from the intralayer and indirect exciton.Moreover,with these two laser modes,we obtained interlayer exciton in WS_(2)/WSe_(2) heterostructures with stronger out-of-plane polarization,due to the formation of vertical electric dipole moment.
基金This research is supported by a grant from FUTABA DENSHI foundation.
文摘A high-speed and economical optical local access network system is proposed where bi-directional polarization multiplexing is applied to a bi-directional transmission. Experimental results using a prototype system confirm low optical loss and environmental stabilities.
文摘Two new series (A & B) of three materials each based on the aroyl hydrazinato-nickel (II) complex were synthesized and characterized. The core molecule in these series consists of two 4-benzoyloxy benzylidene moieties and two benzene rings attached at the azomethine moiety. These latter benzene rings have one or two alkoxy chains comprised of either 10, 12, 16 or 18 carbon atoms. The characterization of these two series by polarized optical microscopy and differential scanning calorimetry is described herein. Upon cooling from the Isotropic phase, three of the six materials display a monophasic columnar phase and the other three possess a biphasic nematic and columnar phases. Upon heating, all six materials have a clearance point at high temperatures without displaying mesomorphic behavior. In series B mesogens, it was observed that the longer the hydrocarbon tail length, the lower the clearance point.
文摘The mesogenic properties of a homologous series of aromatic ester materials are investigated. Single tail and double tail materials were synthesized to compare with other series we prepared and published earlier. The phase sequences and transition temperatures were obtained by polarized light microscopy and differential scanning calorimetry. Only the single tail materials with the ester attached to naphthalene at position 2 display mesogenicbehavior. Two materials (ZH 29 & ZH 32) possess a monophasic nematic phase and another two materials (ZH 14 & ZH 35) display biphasic nematic and smectic (A) phases.
基金supported by the National Natural Science Foundation of China(Grant Nos.61320106014,61405117,and 61675104)the K.C.Wong Magna Fund in Ningbo University,China
文摘The optical properties of a three-arm plasmonic nanoantenna with and without broken symmetry were analyzed in detail. For the symmetrical structure, the local electric field can be significantly enhanced and well confined within the feed gap, whilst the extinction spectrum illustrates polarization independence. With broken symmetry, multi-wavelength resonances are observed due to the single dipole resonance and dipole–dipole coupling effect, and wide tunability is also available through minor structural adjustment. Especially when illuminated by a circularly polarized light beam, the extinction and the electric field distribution can be effectively modulated by just varying the incident wavelength.