Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and i...Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.展开更多
Geotechnical engineering is characterized by many uncertainties,including soil material properties,environmental effects,and engineering design and construction,which bring a significant challenge to geotechnical moni...Geotechnical engineering is characterized by many uncertainties,including soil material properties,environmental effects,and engineering design and construction,which bring a significant challenge to geotechnical monitoring.However,conventional sensors with several inherent limitations,such as electromagnetic interference,signal loss in long-distance transmission,and low durability in harsh environments cannot fully meet current monitoring needs.Recently,fiber optic sensing technologies have been successfully applied in geotechnical monitoring due to the significant advantages of anti-electromagnetic interference,stable signal long-distance transmission,high durability,high sensitivity,and lightweight,which can be considered an ideal replacement for conventional sensors.In this paper,the working principle of different fiber optic sensing technologies,the development of fiber optic-based sensors,and the recent application status of these sensing technologies for geotechnical monitoring were comprehensively reviewed and discussed in detail.Finally,the challenges and countermeasures of the sensing technologies in geotechnical monitoring were also presented and discussed.展开更多
基金funded by the National Natural Science Foundation of China(51705024,51535002,51675053,61903041,61903042,and 61903041)the National Key Research and Development Program of China(2016YFF0101801)+4 种基金the National Hightech Research and Development Program of China(2015AA042308)the Innovative Equipment Pre-Research Key Fund Project(6140414030101)the Manned Space Pre-Research Project(20184112043)the Beijing Municipal Natural Science Foundation(F7202017 and 4204101)the Beijing Nova Program of Science and Technology(Z191100001119052)。
文摘Structural deformation monitoring of flight vehicles based on optical fiber sensing(OFS)technology has been a focus of research in the field of aerospace.After nearly 30 years of research and development,Chinese and international researchers have made significant advances in the areas of theory and methods,technology and systems,and ground experiments and flight tests.These advances have led to the development of OFS technology from the laboratory research stage to the engineering application stage.However,a few problems encountered in practical applications limit the wider application and further development of this technology,and thus urgently require solutions.This paper reviews the history of research on the deformation monitoring of flight vehicles.It examines various aspects of OFS-based deformation monitoring including the main varieties of OFS technology,technical advantages and disadvantages,suitability in aerospace applications,deformation reconstruction algorithms,and typical applications.This paper points out the key unresolved problems and the main evolution paradigms of engineering applications.It further discusses future development directions from the perspectives of an evolution paradigm,standardization,new materials,intelligentization,and collaboration.
基金funded by the National Natural Science Foundation of China(grant no.52122805,52078103,42225702).
文摘Geotechnical engineering is characterized by many uncertainties,including soil material properties,environmental effects,and engineering design and construction,which bring a significant challenge to geotechnical monitoring.However,conventional sensors with several inherent limitations,such as electromagnetic interference,signal loss in long-distance transmission,and low durability in harsh environments cannot fully meet current monitoring needs.Recently,fiber optic sensing technologies have been successfully applied in geotechnical monitoring due to the significant advantages of anti-electromagnetic interference,stable signal long-distance transmission,high durability,high sensitivity,and lightweight,which can be considered an ideal replacement for conventional sensors.In this paper,the working principle of different fiber optic sensing technologies,the development of fiber optic-based sensors,and the recent application status of these sensing technologies for geotechnical monitoring were comprehensively reviewed and discussed in detail.Finally,the challenges and countermeasures of the sensing technologies in geotechnical monitoring were also presented and discussed.