期刊文献+
共找到1,947篇文章
< 1 2 98 >
每页显示 20 50 100
Review of advanced road materials, structures, equipment, and detection technologies 被引量:1
1
作者 JRE Editorial Office Maria Chiara Cavalli +37 位作者 De Chen Qian Chen Yu Chen Augusto Cannone Falchetto Mingjing Fang Hairong Gu Zhenqiang Han Zijian He Jing Hu Yue Huang Wei Jiang Xuan Li Chaochao Liu Pengfei Liu Quantao Liu Guoyang Lu Yuan Ma Lily Poulikakos Jinsong Qian Aimin Sha Liyan Shan Zheng Tong B.Shane Underwood Chao Wang Chaohui Wang Di Wang Haopeng Wang Xuebin Wang Chengwei Xing Xinxin Xu Min Ye Huanan Yu Huayang Yu Zhe Zeng You Zhan Fan Zhang Henglong Zhang Wenfeng Zhu 《Journal of Road Engineering》 2023年第4期370-468,共99页
As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,... As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,structures,equipment,and detection technologies related to road engineering have continually and progressively emerged,reshaping the landscape of pavement systems.There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies.Therefore,Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of“advanced road materials,structures,equipment,and detection technologies”.This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars,all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering.It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering:advanced road materials,advanced road structures and performance evaluation,advanced road construction equipment and technology,and advanced road detection and assessment technologies. 展开更多
关键词 Road engineering Advanced road material Advanced road structure Advanced road equipment Advanced road detection technology
下载PDF
Multi-Equipment Detection Method for Distribution Lines Based on Improved YOLOx-s
2
作者 Lei Hu Yuanwen Lu +2 位作者 Si Wang Wenbin Wang Yongmei Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第12期2735-2749,共15页
The YOLOx-s network does not sufficiently meet the accuracy demand of equipment detection in the autonomous inspection of distribution lines by Unmanned Aerial Vehicle(UAV)due to the complex background of distribution... The YOLOx-s network does not sufficiently meet the accuracy demand of equipment detection in the autonomous inspection of distribution lines by Unmanned Aerial Vehicle(UAV)due to the complex background of distribution lines,variable morphology of equipment,and large differences in equipment sizes.Therefore,aiming at the difficult detection of power equipment in UAV inspection images,we propose a multi-equipment detection method for inspection of distribution lines based on the YOLOx-s.Based on the YOLOx-s network,we make the following improvements:1)The Receptive Field Block(RFB)module is added after the shallow feature layer of the backbone network to expand the receptive field of the network.2)The Coordinate Attention(CA)module is added to obtain the spatial direction information of the targets and improve the accuracy of target localization.3)After the first fusion of features in the Path Aggregation Network(PANet),the Adaptively Spatial Feature Fusion(ASFF)module is added to achieve efficient re-fusion of multi-scale deep and shallow feature maps by assigning adaptive weight parameters to features at different scales.4)The loss function Binary Cross Entropy(BCE)Loss in YOLOx-s is replaced by Focal Loss to alleviate the difficulty of network convergence caused by the imbalance between positive and negative samples of small-sized targets.The experiments take a private dataset consisting of four types of power equipment:Transformers,Isolators,Drop Fuses,and Lightning Arrestors.On average,the mean Average Precision(mAP)of the proposed method can reach 93.64%,an increase of 3.27%.The experimental results show that the proposed method can better identify multiple types of power equipment of different scales at the same time,which helps to improve the intelligence of UAV autonomous inspection in distribution lines. 展开更多
关键词 Distribution lines UAV autonomous inspection power equipment detection YOLOx-s
下载PDF
Online Fault Detection Configuration on Equipment Side of a Variable-Air-Volume Air Handling Unit
3
作者 杨学宾 李鑫海 +2 位作者 杨思钰 王吉 罗雯军 《Journal of Donghua University(English Edition)》 CAS 2023年第2期225-231,共7页
With the development of the technology of the Internet of Things,more and more operational data can be collected from air conditioning systems.Unfortunately,the most of existing air conditioning controllers mainly pro... With the development of the technology of the Internet of Things,more and more operational data can be collected from air conditioning systems.Unfortunately,the most of existing air conditioning controllers mainly provide controlling functions more than storing,processing or computing the measured data.This study develops an online fault detection configuration on the equipment side of air conditioning systems to realize these functions.Modbus communication is served to collect real-time operational data.The calculating programs are embedded to identify whether the measured signals exceed their limits or not,and to detect if sensor reading is frozen and other faults in relation to the operational performance are generated or not.The online fault detection configuration is tested on an actual variable-air-volume(VAV)air handling unit(AHU).The results show that the time ratio of fault detection exceeds 95.00%,which means that the configuration exhibits an acceptable fault detection effect. 展开更多
关键词 fault detection software configuration online monitoring equipment side variable-air-volume(VAV) air handling unit(AHU)
下载PDF
Similarity evaluation model for the internal defect detection of strip steel
4
作者 ZHANG Yalin WANG Yaojie WANG Xuemin 《Baosteel Technical Research》 CAS 2024年第1期8-13,共6页
An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection ... An internal defect meter is an instrument to detect the internal inclusion defects of cold-rolled strip steel.The detection accuracy of the equipment can be evaluated based on the similarity of the multiple detection data obtained for the same steel coil.Based on the cosine similarity model and eigenvalue matrix model,a comprehensive evaluation method to calculate the weighted average of similarity is proposed.Results show that the new method is consistent with and can even replace artificial evaluation to realize the automatic evaluation of strip defect detection results. 展开更多
关键词 internal defect INCLUSION similarity evaluation model REPEATABILITY detection equipment strip steel
下载PDF
An Automated Detection Approach of Protective Equipment Donning for Medical Staff under COVID-19 Using Deep Learning
5
作者 Qiang Zhang Ziyu Pei +4 位作者 Rong Guo Haojun Zhang Wanru Kong Jie Lu Xueyan Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期845-863,共19页
Personal protective equipment(PPE)donning detection for medical staff is a key link of medical operation safety guarantee and is of great significance to combat COVID-19.However,the lack of dedicated datasets makes th... Personal protective equipment(PPE)donning detection for medical staff is a key link of medical operation safety guarantee and is of great significance to combat COVID-19.However,the lack of dedicated datasets makes the scarce research on intelligence monitoring of workers’PPE use in the field of healthcare.In this paper,we construct a dress codes dataset for medical staff under the epidemic.And based on this,we propose a PPE donning automatic detection approach using deep learning.With the participation of health care personnel,we organize 6 volunteers dressed in different combinations of PPE to simulate more dress situations in the preset structured environment,and an effective and robust dataset is constructed with a total of 5233 preprocessed images.Starting from the task’s dual requirements for speed and accuracy,we use the YOLOv4 convolutional neural network as our learning model to judge whether the donning of different PPE classes corresponds to the body parts of the medical staff meets the dress codes to ensure their self-protection safety.Experimental results show that compared with three typical deeplearning-based detection models,our method achieves a relatively optimal balance while ensuring high detection accuracy(84.14%),with faster processing time(42.02 ms)after the average analysis of 17 classes of PPE donning situation.Overall,this research focuses on the automatic detection of worker safety protection for the first time in healthcare,which will help to improve its technical level of risk management and the ability to respond to potentially hazardous events. 展开更多
关键词 COVID-19 medical staff personal protective equipment donning detection deep learning intelligent monitoring
下载PDF
浅析ARIES采集站Equipment not detected故障的维修
6
作者 王春英 王全收 柳子强 《物探装备》 2015年第5期306-308,共3页
在ARIES采集站的测试、检修过程中,比较常见的故障是Equipment not detected(检测不到设备)的故障。本文根据Equipment not detected出现时的故障现象,有针对性地分析了放电接口板被烧毁、采集站电源异常、不能正常传输时对应的电源电路... 在ARIES采集站的测试、检修过程中,比较常见的故障是Equipment not detected(检测不到设备)的故障。本文根据Equipment not detected出现时的故障现象,有针对性地分析了放电接口板被烧毁、采集站电源异常、不能正常传输时对应的电源电路,准确地定位了故障的原因,并介绍了相应的故障排除方法。 展开更多
关键词 采集站 ARIES 检测不到设备 故障原因 维修方法
下载PDF
The Development of a Knowledgeable Monitoring System for Weapon Equipment 被引量:1
7
作者 Yan Shenggang, Yang Daoqing, Zhao SongzhengNorthwestern Polytechnical UniversityXi’an, 710072, Shaanxi, P.R.China 《International Journal of Plant Engineering and Management》 1998年第1期18-23,共6页
In order to make the combat effectiveness of weapon yield well, it is necessary to maintain and monitor the weapons. Based on the requirement of weapon equipment, an integrated maintaining system is developed, which c... In order to make the combat effectiveness of weapon yield well, it is necessary to maintain and monitor the weapons. Based on the requirement of weapon equipment, an integrated maintaining system is developed, which can be used to carry out the maintenance by using electricity periodically and function detection at module level. So, the breakdown rate of product component is deceased a lot, product reliability is improved, and the life cycle is prolonged. Thus, combat effectiveness of weapon equipment is improved. 展开更多
关键词 equipment WEAPON weapon equipment maintenance and detection POWER
下载PDF
Real-Time Safety Helmet Detection Using Yolov5 at Construction Sites 被引量:2
8
作者 Kisaezehra Muhammad Umer Farooq +1 位作者 Muhammad Aslam Bhutto Abdul Karim Kazi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期911-927,共17页
The construction industry has always remained the economic and social backbone of any country in the world where occupational health and safety(OHS)is of prime importance.Like in other developing countries,this indust... The construction industry has always remained the economic and social backbone of any country in the world where occupational health and safety(OHS)is of prime importance.Like in other developing countries,this industry pays very little,rather negligible attention to OHS practices in Pakistan,resulting in the occurrence of a wide variety of accidents,mishaps,and near-misses every year.One of the major causes of such mishaps is the non-wearing of safety helmets(hard hats)at construction sites where falling objects from a height are unavoid-able.In most cases,this leads to serious brain injuries in people present at the site in general and the workers in particular.It is one of the leading causes of human fatalities at construction sites.In the United States,the Occupational Safety and Health Administration(OSHA)requires construction companies through safety laws to ensure the use of well-defined personal protective equipment(PPE).It has long been a problem to ensure the use of PPE because round-the-clock human monitoring is not possible.However,such monitoring through technological aids or automated tools is very much possible.The present study describes a systema-tic strategy based on deep learning(DL)models built on the You-Only-Look-Once(YOLOV5)architecture that could be used for monitoring workers’hard hats in real-time.It can indicate whether a worker is wearing a hat or not.The proposed system usesfive different models of the YOLOV5,namely YOLOV5n,YOLOv5s,YOLOv5 m,YOLOv5l,and YOLOv5x for object detection with the support of PyTorch,involving 7063 images.The results of the study show that among the DL models,the YOLOV5x has a high performance of 95.8%in terms of the mAP,while the YOLOV5n has the fastest detection speed of 70.4 frames per second(FPS).The proposed model can be successfully used in practice to recognize the hard hat worn by a worker. 展开更多
关键词 Object detection computer-vision personal protective equipment(PPE) deep learning industry revolution(IR)4.0 safety helmet detection
下载PDF
GNSS/MET Station Equipment Maintenance and Product Application
9
作者 Lin Ma Yanyun Sun +3 位作者 Yuqi Zhang Bing Han Yi Wang Lin Li 《Journal of Geoscience and Environment Protection》 2019年第9期105-113,共9页
Based on the use of Global Navigation Satellite System (GNSS) for meteorological detection in the world, we used the GNSS/MET detection equipment in the meteorological departments of Liaoning Province of China and its... Based on the use of Global Navigation Satellite System (GNSS) for meteorological detection in the world, we used the GNSS/MET detection equipment in the meteorological departments of Liaoning Province of China and its data to study and summarize the maintenance methods of GNSS/MET (Global Navigation Satellite System Meteorology) detection equipment and the application of water vapor products in operational systems. The results show that: 1) For GNSS/MET failures, specific inspections and classifications can be performed according to different phenomena;2) The GNSS water vapor measurement station samples every 30 seconds, forming one set of GNSS data every hour, and can detonate the atmospheric precipitation by solving the original data;3) Using the “Navigation Satellite Remote Sensing Water Vapor Application Management System”, the GNSS/MET water vapor products can be directly displayed. We can get the conclusion that GNSS/MET has far-reaching significance for studying the law of atmospheric water vapor changes and enhancing the ability to monitor severe weather such as heavy rain and strong convection. 展开更多
关键词 Atmospheric detectION GNSS/MET detectION equipment equipment Maintenance PRODUCT APPLICATION
下载PDF
Device Anomaly Detection Algorithm Based on Enhanced Long Short-Term Memory Network
10
作者 罗辛 陈静 +1 位作者 袁德鑫 杨涛 《Journal of Donghua University(English Edition)》 CAS 2023年第5期548-559,共12页
The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-... The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment. 展开更多
关键词 anomaly detection production equipment genetic algorithm(GA) long short-term memory(LSTM) principal component analysis(PCA)
下载PDF
基于tSNE多特征融合的JTC轨旁设备故障检测 被引量:1
11
作者 武晓春 郜文祥 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第3期1244-1255,共12页
无绝缘轨道电路(Jointless Track Circuit,JTC)的轨旁设备在室外长期运营过程中,其可靠性会逐渐降低,进而给列车行车安全带来严重威胁。以轨道电路读取器(Track Circuit Reader,TCR)感应电压为基础,针对JTC故障诊断研究中轨旁设备故障... 无绝缘轨道电路(Jointless Track Circuit,JTC)的轨旁设备在室外长期运营过程中,其可靠性会逐渐降低,进而给列车行车安全带来严重威胁。以轨道电路读取器(Track Circuit Reader,TCR)感应电压为基础,针对JTC故障诊断研究中轨旁设备故障类型复杂和故障特征提取不充分等问题,提出一种基于t分布随机邻域嵌入(t-distribution Stochastic Neighbor Embedding,tSNE)多特征融合的JTC轨旁设备故障检测模型。首先,根据不同轨旁设备故障对TCR感应电压信号的影响,分析各轨旁设备的故障特性。其次,提取TCR感应电压信号的方差、有效值、峰值因子等幅值域特征,以及排列熵、散布熵特征构成原始故障特征集。为了去除其中的冗余信息,得到具有较高判别性的融合流形特征,利用tSNE算法进行特征融合。最后输入深度残差网络(Deep Residual Network,DRN)得到故障检测混淆矩阵,实现轨旁设备故障定位。实验结果表明:tSNE算法融合后的特征在异类和同类故障样本之间分别有较大的类间间距和较小的类内间距,相比主成分分析(Principal Component Analysis, PCA)、随机相似性嵌入(Stochastic Proximity Embedding, SPE)、随机邻域嵌入(Stochastic Neighbor Embedding,SNE)算法具有更优的融合特征提取效果。此外,结合DRN可以有效识别多种轨旁设备故障,达到98.28%的故障检测准确率。通过现场信号进行实例验证,结果表明该故障检测模型能满足铁路现场对室外设备进行故障定位的实际需求。 展开更多
关键词 轨旁设备 幅值域 排列熵 散布熵 多特征融合 故障检测
下载PDF
基于改进YOLOv7-tiny的高空作业人员安防装备检测算法
12
作者 文家燕 周志文 +1 位作者 辛华健 谢广明 《现代电子技术》 北大核心 2024年第13期164-171,共8页
针对现有高空作业人员安防装备检测算法参数量较大且检测目标相对单一,难以适应复杂的高空作业场景等问题,提出一种基于改进YOLOv7-tiny的高空作业人员安防装备检测算法。首先,将主干网络重新设计为更轻量的YOLOv7-FasterNet,并调整空... 针对现有高空作业人员安防装备检测算法参数量较大且检测目标相对单一,难以适应复杂的高空作业场景等问题,提出一种基于改进YOLOv7-tiny的高空作业人员安防装备检测算法。首先,将主干网络重新设计为更轻量的YOLOv7-FasterNet,并调整空间金字塔池化结构,实现模型参数量的压缩;其次,在ELAN-L模块中扩展梯度传输路径的分支,解决了模型压缩造成的通道信息缺失问题,提升了特征信息的提取能力;最后,将网络中下采样部分替换为Involution模块,降低参数冗余,增强网络对全局的捕获能力。实验结果表明,改进的YOLOv7-tiny算法能够更好地适应复杂高空作业场景,在开源数据集上具备良好的性能。该算法的平均检测精度达到94.7%,较原模型提升1.5%,参数量较原模型下降11.6%,实验结果验证了算法改进措施的有效性。 展开更多
关键词 目标检测 安防装备 高空作业 YOLOv7-tiny 轻量化 INVOLUTION
下载PDF
基于轻量化YOLOv5的电气设备外部缺陷检测
13
作者 廖晓辉 谢子晨 +2 位作者 辛忠良 陈怡 叶梁劲 《郑州大学学报(工学版)》 CAS 北大核心 2024年第4期117-124,共8页
为了提高变电站电气设备外部缺陷实时检测的精度,同时让检测模型更加轻量化,提出了一种基于轻量化YOLOv5的电气设备外部缺陷检测方法。首先,构建电气设备外部缺陷图像数据集并进行数据增强处理。其次,采用3种优化策略对原YOLOv5进行改进... 为了提高变电站电气设备外部缺陷实时检测的精度,同时让检测模型更加轻量化,提出了一种基于轻量化YOLOv5的电气设备外部缺陷检测方法。首先,构建电气设备外部缺陷图像数据集并进行数据增强处理。其次,采用3种优化策略对原YOLOv5进行改进:通过引入EfficientViT网络改进算法主干网络,减少模型参数量,并在算法Neck部分中加入SimAM无参数注意力机制来提高变电站复杂背景下的识别精度,同时采用Soft-NMS模块来改进检测框筛选方式,避免出现缺陷漏检现象。最后,通过消融实验进行验证。结果表明:轻量化后的电气设备外部缺陷检测模型mAP值稳定在86.4%,与原模型相比提高了1.2百分点,模型参数量减少了20%,计算量减少了38%,模型大小为11 MB,比原模型减少了19.7%。改进后的模型能够满足设备外部缺陷实时检测的要求,可以实现模型的轻量化部署。 展开更多
关键词 缺陷检测 电气设备 轻量化YOLOv5 EfficientViT网络 SimAM注意力 Soft-NMS结构
下载PDF
基于大数据的工业设备智能检测与远程运维系统研究
14
作者 王富春 梁云 周士翔 《模具制造》 2024年第8期165-167,共3页
设备的性能及运行的可靠性是企业提高生产效率、降低运营成本的关键。基于某汽车整车厂2017-2019年度的维修统计数据,通过对设备劣化分析、故障类型分类、故障预测性解决方案以及AI技术在故障检测中的应用等内容,深入研究了设备故障机... 设备的性能及运行的可靠性是企业提高生产效率、降低运营成本的关键。基于某汽车整车厂2017-2019年度的维修统计数据,通过对设备劣化分析、故障类型分类、故障预测性解决方案以及AI技术在故障检测中的应用等内容,深入研究了设备故障机理及运维技术,并提出了基于大数据的设备智能检测与远程运维系统的设计方案。通过远程实时监控、智能检测设备的运行状态、通过大数据分析,发现设备运行潜在的安全风险,预测并预防可能的故障,以提高设备的可靠性、降低运维成本并提升运维效率,为企业的可持续发展提供有力保障。 展开更多
关键词 设备故障机理 AI故障检测 大数据
下载PDF
基于整体与局部纹理特征加权融合的港机装备钢丝绳断丝缺陷检测研究
15
作者 张卫国 刘聪 +2 位作者 曾祥堃 夏立成 王紫阳 《中国工程机械学报》 北大核心 2024年第3期398-403,共6页
钢丝绳是港机装备的重要部件,由于作业工况环境恶劣,钢丝绳表面极易引起断丝等缺陷,影响港机装备作业安全。针对港机装备钢丝绳表面油泥严重、光照亮度不均,以及港机装备钢丝绳断丝缺陷能够在钢丝绳股顶钢丝椭圆形区域内有效体现的特点... 钢丝绳是港机装备的重要部件,由于作业工况环境恶劣,钢丝绳表面极易引起断丝等缺陷,影响港机装备作业安全。针对港机装备钢丝绳表面油泥严重、光照亮度不均,以及港机装备钢丝绳断丝缺陷能够在钢丝绳股顶钢丝椭圆形区域内有效体现的特点,提出了一种基于钢丝绳整体纹理特征与股顶钢丝椭圆形区域边缘轮廓纹理特征加权融合的钢丝绳断丝缺陷检测方法。首先采用图像降噪、增强、校正技术对钢丝绳原始图像进行预处理。然后采用图像平滑、阈值分割及边缘特征提取技术对股顶钢丝椭圆形区域边缘轮廓进行提取。接着采用局部二值模式(LBP)算子分别提取钢丝绳整体纹理特征与股顶钢丝椭圆形区域边缘轮廓纹理特征,并对钢丝绳整体纹理及边缘轮廓纹理特征进行特征加权融合。最后对加权融合后的特征向量进行主成分分析(PCA)法降维,并应用支持向量机(SVM)技术对钢丝绳断丝缺陷进行检测。研究结果表明:本文提出的方法对实际工况下重油泥、光照不均等钢丝绳断丝缺陷具有较好的检测效果,具有一定的工程应用价值。 展开更多
关键词 港机装备 钢丝绳断丝检测 股顶钢丝 椭圆形轮廓 纹理特征 特征加权融合
下载PDF
基于深度学习的锂电池表面字符识别和缺陷检测
16
作者 刘明尧 索广飞 《自动化与仪表》 2024年第6期91-95,112,共6页
该文针对在锂电池的生产过程中,软包锂电池表面喷码字符识别和缺陷检测,由于人工检测耗时长、成本高等缺点,提出了基于CnOCR的字符识别方法和基于改进YOLOv8模型的字符缺陷检测方法 。该方法首先利用CnStd算法对字符区域进行了定位,利用... 该文针对在锂电池的生产过程中,软包锂电池表面喷码字符识别和缺陷检测,由于人工检测耗时长、成本高等缺点,提出了基于CnOCR的字符识别方法和基于改进YOLOv8模型的字符缺陷检测方法 。该方法首先利用CnStd算法对字符区域进行了定位,利用YOLOv8模型对字符进行训练,检测出有缺陷的字符。根据字符区域特点进行图像增强、二值化和字符分割等处理,采用CnOCR模型进行字符的识别。深度学习方法提高了字符识别和缺陷检测的准确率,并且保证了整个检测系统的识别和检测速度。实验结果表明,字符识别率在96%以上,字符缺陷检测率在94%以上,符合锂电池自动化生产线的生产需要。 展开更多
关键词 软包锂电池 字符识别 字符缺陷检测 CnOCR YOLOv8神经网络 电池自动化设备
下载PDF
基于改进Faster R-CNN的变电站设备外部缺陷检测
17
作者 张铭泉 邢福德 刘冬 《智能系统学报》 CSCD 北大核心 2024年第2期290-298,共9页
针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-C... 针对变电站设备外部缺陷目标检测任务中目标形状多样,周围环境复杂,当前代表性算法识别准确度低,错检漏检严重的问题,对比了众多目标检测算法在变电站设备缺陷数据集上的检测结果,检测精度较高的是添加了特征融合金字塔结构的Faster R-CNN(faster region-based convolutional network)算法,但其对小目标物体和设备渗漏油的检测精度仍有提升空间,为此设计一种基于Faster R-CNN的改进算法。改进算法通过对输入图像进行数据增强,在网络中添加SPP(spatial pyramid pooling)结构以及改进特征融合方式,对分类以及边界框回归损失函数进行改进的方式来提高缺陷的检测精度。与原Faster R-CNN算法进行对比,改进算法在变电站设备缺陷目标检测数据集的检测结果中AP(average precision)(0.5∶0.95)提高了2.7个百分点,AP(0.5)提高了4.3个百分点,对小目标物体的检测精度也提高了1.8个百分点,试验结果验证了该方法的有效性。 展开更多
关键词 变电站设备外部缺陷 深度学习 目标检测 卷积神经网络 Faster R-CNN 特征提取 特征融合金字塔结构 损失函数
下载PDF
基于改进YOLOv5s的个人防护设备检测算法研究
18
作者 侯卫民 程婷婷 何孟玲 《长江信息通信》 2024年第6期81-84,共4页
由于施工现场环境复杂、遮挡物多,由无人机收集到的工人个人防护设备(包括安全帽、反光背心)图像具有目标小、检测难度大的特点,使用原YOLOv5s模型进行检测存在错检、漏检的问题。因此,文章提出了一种基于改进的YOLOv5s的个人防护设备... 由于施工现场环境复杂、遮挡物多,由无人机收集到的工人个人防护设备(包括安全帽、反光背心)图像具有目标小、检测难度大的特点,使用原YOLOv5s模型进行检测存在错检、漏检的问题。因此,文章提出了一种基于改进的YOLOv5s的个人防护设备检测算法,通过在YOLOv5s模型中引入动态稀疏注意力模块,使模型更关注有价值的区域,并对损失函数进行优化,将原YOLOv5s模型的CIoU损失函数替换为Focal-EIoU损失函数,减少损失函数的自由度提高模型的性能。实验采用无人机采集和网络检索获得的自建个人防护设备数据集来进行训练。实验结果表明,经过100次迭代训练后,改进算法对于个人防护设备检测的FPS提高了6.79%,mAP提高了9.59%。由此可见,文章所提出的改进算法有效降低了模型的误检率和漏检率,在个人防护设备的检测上表现出了良好的性能。 展开更多
关键词 个人防护设备检测 YOLOv5s 动态稀疏注意力模块 Focal-EIoU
下载PDF
多维高斯贝叶斯算法造纸机械设备故障自动检测优化设计 被引量:2
19
作者 刘东利 孙全芳 《造纸科学与技术》 2024年第1期115-118,共4页
信息技术进步发展背景下,各行业已经开始使用机械化设备进行生产,进而提升生产质量。虽然造纸设备能大幅度的提升整体生产的效率,但由于其整体的复杂性,在生产运动过程中会出现故障。基于此,设计多维高斯贝叶斯算法造纸机械设备故障信... 信息技术进步发展背景下,各行业已经开始使用机械化设备进行生产,进而提升生产质量。虽然造纸设备能大幅度的提升整体生产的效率,但由于其整体的复杂性,在生产运动过程中会出现故障。基于此,设计多维高斯贝叶斯算法造纸机械设备故障信息诊断系统;利用完整的框架结构设计客户机/服务器模式,联合服务器与信息查询模块,实现造纸机械设备故障信息诊断系统的体系结构搭建;在此基础上,计算故障信息的松弛度数值,通过判定迭代门限的方式,实现对多维系数信号的处理,完成多为高斯贝叶斯算法造纸机械设备故障自动检测功能。最后结合造纸机械设备故障情况提出同步维修、分步维修、易维修设计等方法,为造纸机械设备的正常平稳运行提供了技术保障。 展开更多
关键词 贝叶斯算法 造纸机械设备 故障原因 自动检测
下载PDF
基于卷积—反残差和组合注意力机制的航天器多余物检测 被引量:1
20
作者 花诗燕 李大伟 +1 位作者 贾书一 汪俊 《计算机集成制造系统》 EI CSCD 北大核心 2024年第1期53-66,共14页
航天器密闭电子设备内腔多余物给航天器飞行安全带来了巨大隐患。由于多余物体积小、与设备内常规组件形态结构相似且易被其他组件遮挡,采用现有的方法对其进行检测时误检、漏检频发。为解决上述问题,提出一种基于卷积—反残差和组合注... 航天器密闭电子设备内腔多余物给航天器飞行安全带来了巨大隐患。由于多余物体积小、与设备内常规组件形态结构相似且易被其他组件遮挡,采用现有的方法对其进行检测时误检、漏检频发。为解决上述问题,提出一种基于卷积—反残差和组合注意力机制的航天器密闭电子设备多余物检测网络RPDN。首先,网络通过构建卷积—反残差模块,保证了多余物细粒度特征的完整性;其次,设计组合注意力机制,增强了多余物特征的表征能力;最后,结合多尺度特征融合模块与目标检测层从多维度进行目标预测。实验结果表明RPDN在各项评价指标上均取得了良好的效果,mAP达到92.16%,检测效率达到了13FPS,实现了航天器密闭电子设备内腔多余物高效、精准检测。 展开更多
关键词 航天器 密闭电子设备 多余物检测 卷积—反残差模块 组合注意力机制
下载PDF
上一页 1 2 98 下一页 到第
使用帮助 返回顶部