All optical network based on wavelength division multiplexing transmission system with optical cross connect (OXC) is an essential approach for optical commumications.Crosstalk introduced by OXC (specially large scale...All optical network based on wavelength division multiplexing transmission system with optical cross connect (OXC) is an essential approach for optical commumications.Crosstalk introduced by OXC (specially large scale one) is a key limiting factor for its capacity. Optical signal passing through a typical OXC is analyzed in this paper, followed by description of the generation and effect of intraband crosstalk.The power penalties induced by intraband crosstalk versus the number of multiplexed wavelengths M and the number of input fibers N have been given by numerical simulations. The results show that the coherent crosstalk is the most critical limitation on OXC and depends more closely on the number of multiplexed wavelengths M than the number of input fibers N . Crosstalk is suppressed by doubly filtering, fixing optimum decision-threshold and appropriately choosing the number of multiplexed wavelengths M .展开更多
In the internet protocol(IP) over multi-granular optical switch network (IP/MG-OXC), the network node is a typical multilayer switch comprising several layers, the IP packet switching (PXC) layer, wavelength swi...In the internet protocol(IP) over multi-granular optical switch network (IP/MG-OXC), the network node is a typical multilayer switch comprising several layers, the IP packet switching (PXC) layer, wavelength switching (WXC) layer and fiber switching (FXC) layer. This network is capable of both IP layer grooming and wavelength grooming in a hierarchical manner. Resource provisioning in the multi-granular network paradigm is called hierarchical grooming problem. An integer linear programming (ILP) model is proposed to formulate the problem. An iterative heuristic approach is developed for solving the problem in large networks. Case study shows that IP/MG-OXC network is much more extendible and can significantly save the overall network cost as compared with IP over wavelength division multiplexing network.展开更多
This paper discusses a 40-Gbit/s transparent optical network focusing on the optical transport performance. We show 1200-km transmission with two WSOXC' sspaced by 400 km. In addition, network control issues are b...This paper discusses a 40-Gbit/s transparent optical network focusing on the optical transport performance. We show 1200-km transmission with two WSOXC' sspaced by 400 km. In addition, network control issues are briefly addressed.展开更多
In this paper, Optical Cross-Connection (OXC) induced crosstalk has been carefully analyzed for multiwavelength all-optical networks. Formulae are derived for calculating the crosstalk power of homowavelength crosstal...In this paper, Optical Cross-Connection (OXC) induced crosstalk has been carefully analyzed for multiwavelength all-optical networks. Formulae are derived for calculating the crosstalk power of homowavelength crosstalk and the total crosstalk at the receiver end. The results show that the optical switches induced crosstalk dominates over other crosstalk components of OXC, and the accumulated homowavelength crosstalk increases almost linearly with the increasing of the OXC number. At the receiver end , the heterowavelength crosstalk induced by the receiver optical filter has the same order as that of homowavelength crosstalk of OXC. The results of different optical components model are also discussed.展开更多
文摘All optical network based on wavelength division multiplexing transmission system with optical cross connect (OXC) is an essential approach for optical commumications.Crosstalk introduced by OXC (specially large scale one) is a key limiting factor for its capacity. Optical signal passing through a typical OXC is analyzed in this paper, followed by description of the generation and effect of intraband crosstalk.The power penalties induced by intraband crosstalk versus the number of multiplexed wavelengths M and the number of input fibers N have been given by numerical simulations. The results show that the coherent crosstalk is the most critical limitation on OXC and depends more closely on the number of multiplexed wavelengths M than the number of input fibers N . Crosstalk is suppressed by doubly filtering, fixing optimum decision-threshold and appropriately choosing the number of multiplexed wavelengths M .
基金Sponsored by Agency for Singapore Technology and Advance Research(RGM01/16)
文摘In the internet protocol(IP) over multi-granular optical switch network (IP/MG-OXC), the network node is a typical multilayer switch comprising several layers, the IP packet switching (PXC) layer, wavelength switching (WXC) layer and fiber switching (FXC) layer. This network is capable of both IP layer grooming and wavelength grooming in a hierarchical manner. Resource provisioning in the multi-granular network paradigm is called hierarchical grooming problem. An integer linear programming (ILP) model is proposed to formulate the problem. An iterative heuristic approach is developed for solving the problem in large networks. Case study shows that IP/MG-OXC network is much more extendible and can significantly save the overall network cost as compared with IP over wavelength division multiplexing network.
文摘This paper discusses a 40-Gbit/s transparent optical network focusing on the optical transport performance. We show 1200-km transmission with two WSOXC' sspaced by 400 km. In addition, network control issues are briefly addressed.
文摘In this paper, Optical Cross-Connection (OXC) induced crosstalk has been carefully analyzed for multiwavelength all-optical networks. Formulae are derived for calculating the crosstalk power of homowavelength crosstalk and the total crosstalk at the receiver end. The results show that the optical switches induced crosstalk dominates over other crosstalk components of OXC, and the accumulated homowavelength crosstalk increases almost linearly with the increasing of the OXC number. At the receiver end , the heterowavelength crosstalk induced by the receiver optical filter has the same order as that of homowavelength crosstalk of OXC. The results of different optical components model are also discussed.