External optical feedback effects due to reflection, Rayleigh backscattering and coherent Rayleigh backseattering in fiber distributed feedback (DFB) fiber laser sensor system have been investigated. If the feedback...External optical feedback effects due to reflection, Rayleigh backscattering and coherent Rayleigh backseattering in fiber distributed feedback (DFB) fiber laser sensor system have been investigated. If the feedback intensity exceeds critical amount, excess noise would be induced in the demodulator. The maximum tolerable intensity back-reflection coefficient Rc and backscattering coefficient Sc into a fiber DFB laser with lead fiber length from I m to 37.5 km before the onset of instabilities are shown. Rc is found to decrease with increasing lead fiber length while Sc was relatively invariable with varying fiber length. The coherent Rayleigh backscattering (CRBS) would induce neglectable noise with a lead fiber exceeding 13.5 kin. To eliminate these noises, one or two isolators should be incorporated in the system.展开更多
Quantum entanglement plays a key role in both understanding the fundamental aspects of quantum physics and realizing various quantum devices for practical applications. Here we propose how to achieve a coherent switch...Quantum entanglement plays a key role in both understanding the fundamental aspects of quantum physics and realizing various quantum devices for practical applications. Here we propose how to achieve a coherent switch of optomechanical entanglement in an optical whispering-gallery-mode resonator, by tuning the phase difference of the driving lasers. We find that the optomechanical entanglement and the associated two-mode quantum squeezing can be well tuned in a highly asymmetric way,providing an efficient way to protect and enhance quantum entanglement against optical backscattering, in comparison with conventional symmetric devices. Our findings shed a new light on improving the performance of various quantum devices in the practical noisy environment, which is crucial in such a wide range of applications as noise-tolerant quantum processing and the backscattering-immune quantum metrology.展开更多
Information on the concentration of suspended sediments in coastal waters is necessary for the understanding and management of the coastal environment. Traditionally, suspended sediment concentration (SSC) has been ...Information on the concentration of suspended sediments in coastal waters is necessary for the understanding and management of the coastal environment. Traditionally, suspended sediment concentration (SSC) has been measured by time-consuming and costly boat surveys which allow the accurate measurement of SSC for single points in space and time. In order to obtain the instantaneous measurement of SSC, a variety of remote sensing method has been adopted. Remote sensing from airborne and spaceborne sensors has been proven to be a useful adjunct to such surveys as it provides an instantaneous and synoptic view of sediments that would otherwise be unavailable. Dominique Durand and Jerome Bijaoui in 2000 presented a feasible study on optical remote sensing of shallow-water environmental parameters. Yogesh C. Agrawal and H. C. Pottsmith in 2001 tried to use Laser Diffraction Sensors to measure Concentration and Size Distribution of Suspended Sediment. Francisco Pedocchi and Marcelo H. Garcia in 2006 made an evaluation of the LISST-ST instrument for suspended particle size distribution and settling velocity measurements. H.K.Ha and W-Y.Hsu in 2009 tried to measure suspended cohesive sediment concentration using ADV backscatter strength. Shuisen Chen, Ligang Fang in 2009 managed to use remote sensing of turbidity in seawater intrusion reaches of Pearl River Estuary. In this article, the brief review of most of the technologies or methods used to observe the suspended sediment concentration is executed. As the most powerful technology in the remote sensing, acoustic backscatter device is discussed in detail. A comparison between those traditional and modern technologies is made to clarify its future application and development.展开更多
基金supported by the National 863 Program under Grant No. 2007AA03Z415.
文摘External optical feedback effects due to reflection, Rayleigh backscattering and coherent Rayleigh backseattering in fiber distributed feedback (DFB) fiber laser sensor system have been investigated. If the feedback intensity exceeds critical amount, excess noise would be induced in the demodulator. The maximum tolerable intensity back-reflection coefficient Rc and backscattering coefficient Sc into a fiber DFB laser with lead fiber length from I m to 37.5 km before the onset of instabilities are shown. Rc is found to decrease with increasing lead fiber length while Sc was relatively invariable with varying fiber length. The coherent Rayleigh backscattering (CRBS) would induce neglectable noise with a lead fiber exceeding 13.5 kin. To eliminate these noises, one or two isolators should be incorporated in the system.
基金supported by the National Natural Science Foundation of China(Grant Nos.11935006,11774086,12147156,12125402,1197502612064010)+3 种基金supported by the Science and Technology Innovation Program of Hunan Province(Grant No.2020RC4047)supported by the China Postdoctoral Science Foundation(Grant Nos.2021M701176,and 2022T150208)the Science and Technology Innovation Program of Hunan Province(Grant No.2021RC2078)supported by the Natural Science Foundation of Hunan Province(Grant No.2021JJ20036)。
文摘Quantum entanglement plays a key role in both understanding the fundamental aspects of quantum physics and realizing various quantum devices for practical applications. Here we propose how to achieve a coherent switch of optomechanical entanglement in an optical whispering-gallery-mode resonator, by tuning the phase difference of the driving lasers. We find that the optomechanical entanglement and the associated two-mode quantum squeezing can be well tuned in a highly asymmetric way,providing an efficient way to protect and enhance quantum entanglement against optical backscattering, in comparison with conventional symmetric devices. Our findings shed a new light on improving the performance of various quantum devices in the practical noisy environment, which is crucial in such a wide range of applications as noise-tolerant quantum processing and the backscattering-immune quantum metrology.
基金supported by the National Marine Renewable Energy Program(No.GHME2011ZC03,GHME2010ZC08,GHME 2010ZC11 and GHME2010ZC01)Study of the Key Technology of the Forecast of Global Ocean Circulation and Sea Ice(2011BAC03B02)
文摘Information on the concentration of suspended sediments in coastal waters is necessary for the understanding and management of the coastal environment. Traditionally, suspended sediment concentration (SSC) has been measured by time-consuming and costly boat surveys which allow the accurate measurement of SSC for single points in space and time. In order to obtain the instantaneous measurement of SSC, a variety of remote sensing method has been adopted. Remote sensing from airborne and spaceborne sensors has been proven to be a useful adjunct to such surveys as it provides an instantaneous and synoptic view of sediments that would otherwise be unavailable. Dominique Durand and Jerome Bijaoui in 2000 presented a feasible study on optical remote sensing of shallow-water environmental parameters. Yogesh C. Agrawal and H. C. Pottsmith in 2001 tried to use Laser Diffraction Sensors to measure Concentration and Size Distribution of Suspended Sediment. Francisco Pedocchi and Marcelo H. Garcia in 2006 made an evaluation of the LISST-ST instrument for suspended particle size distribution and settling velocity measurements. H.K.Ha and W-Y.Hsu in 2009 tried to measure suspended cohesive sediment concentration using ADV backscatter strength. Shuisen Chen, Ligang Fang in 2009 managed to use remote sensing of turbidity in seawater intrusion reaches of Pearl River Estuary. In this article, the brief review of most of the technologies or methods used to observe the suspended sediment concentration is executed. As the most powerful technology in the remote sensing, acoustic backscatter device is discussed in detail. A comparison between those traditional and modern technologies is made to clarify its future application and development.