In the high precision image measurement system, the verticality error between the axis of the shooting system and the measured object can bring error of the measurement result. The high demand of the system’s vertica...In the high precision image measurement system, the verticality error between the axis of the shooting system and the measured object can bring error of the measurement result. The high demand of the system’s vertical degree is raised by measure system due to the demands of high precision and disposable full field imaging in the micro-parts imaging measurement. The existing method of optical axis verticality detection cannot meet the demand all. In order to achieve the high-precision adjustment of the system optical axis, the algorithm of detecting verticality based on regional image definition is proposed. First, the objected standard image is divided into fixed area. Then, the object plane is moved from the downside to the upside of the focus plane, meanwhile, recording the definition function values of each standard image region at each step, and fitting out the clearest positions of the regions. Finally, according to the inter-regional relations between the locations and the height difference of the each regional clearest position, the small angle between the optical axis and the measured surface can be calculated. The experiment is based on the given image of lithography template with the scale of 10 μm as move unit, and the results show that this method effective reduced the small angle between the system optical axis and the measured body in high-precision image measuring system, the evaluation accuracy is less than 0.1°, meeting the requirements in high-precision measurement. The proposed method of detecting verticality based on regional image definition can evaluate the verticality error between the axis of the shooting system and the measured object accurately, effectively and conveniently.展开更多
Electron cyclotron emission imaging(ECEI) can provide measurements of 2D electron temperature fluctuation with high temporal and spatial resolution in magnetic fusion plasma devices. Two ECEI systems located in diff...Electron cyclotron emission imaging(ECEI) can provide measurements of 2D electron temperature fluctuation with high temporal and spatial resolution in magnetic fusion plasma devices. Two ECEI systems located in different toroidal ports with 67.5 degree separation have been implemented on J-TEXT to study the 3D structure of magnetohydrodynamic(MHD) instabilities. Each system consists of 12(vertical) × 16(horizontal) = 192 channels and the image of the 2nd harmonic X-mode electron cyclotron emission can be captured continuously in the core plasma region. The field curvature adjustment lens concept is developed to control the imaging plane for receiving optics of the ECEI systems. Field curvature of the image can be controlled to match the emission layer. Consequently, a quasi-3D image of the MHD instability in the core of the plasma has been achieved.展开更多
Access to safe drinking water has become an extremely urgent research topic wo rldwide.In recent years,the technology of solar vapor generation has been extensively explored as a potential and effective strategy of tr...Access to safe drinking water has become an extremely urgent research topic wo rldwide.In recent years,the technology of solar vapor generation has been extensively explored as a potential and effective strategy of transforming elements content in seawater.In this review,the basic concepts and theories of metal-based photothermal vapor generation device(PVGD) with excellent optical and thermal regulatory are introduced.In the view of optical regulation,how to achieve high-efficiency localized evaporation in different evaporation system(i.e.,volumetric solar heating and interface solar heating) is discussed;from the aspect of thermal regulation,the importance of selective absorption surface for interfacial PVGD is analyzed.Based on the above discussion and analysis,we summarize the challenges of metal-based desalination device.展开更多
基金supported by Major Science and Technology Funded Project of National High-grad CNC of China (Grant No. 2009ZX04014-092)Tianjin Municipal Key Natural Science Foundation of China (Grant No. 09JCZDJC26700)
文摘In the high precision image measurement system, the verticality error between the axis of the shooting system and the measured object can bring error of the measurement result. The high demand of the system’s vertical degree is raised by measure system due to the demands of high precision and disposable full field imaging in the micro-parts imaging measurement. The existing method of optical axis verticality detection cannot meet the demand all. In order to achieve the high-precision adjustment of the system optical axis, the algorithm of detecting verticality based on regional image definition is proposed. First, the objected standard image is divided into fixed area. Then, the object plane is moved from the downside to the upside of the focus plane, meanwhile, recording the definition function values of each standard image region at each step, and fitting out the clearest positions of the regions. Finally, according to the inter-regional relations between the locations and the height difference of the each regional clearest position, the small angle between the optical axis and the measured surface can be calculated. The experiment is based on the given image of lithography template with the scale of 10 μm as move unit, and the results show that this method effective reduced the small angle between the system optical axis and the measured body in high-precision image measuring system, the evaluation accuracy is less than 0.1°, meeting the requirements in high-precision measurement. The proposed method of detecting verticality based on regional image definition can evaluate the verticality error between the axis of the shooting system and the measured object accurately, effectively and conveniently.
基金supported by the National Magnetic Confinement Fusion Science Program of China under Grant Nos.2013GB106002 and 2014GB109002National Natural Science Foundation of China under Grant Nos.10990210 and 11275200
文摘Electron cyclotron emission imaging(ECEI) can provide measurements of 2D electron temperature fluctuation with high temporal and spatial resolution in magnetic fusion plasma devices. Two ECEI systems located in different toroidal ports with 67.5 degree separation have been implemented on J-TEXT to study the 3D structure of magnetohydrodynamic(MHD) instabilities. Each system consists of 12(vertical) × 16(horizontal) = 192 channels and the image of the 2nd harmonic X-mode electron cyclotron emission can be captured continuously in the core plasma region. The field curvature adjustment lens concept is developed to control the imaging plane for receiving optics of the ECEI systems. Field curvature of the image can be controlled to match the emission layer. Consequently, a quasi-3D image of the MHD instability in the core of the plasma has been achieved.
基金financially supported by the National Natural Science Foundation of China(Nos.51562020 and 51575253)。
文摘Access to safe drinking water has become an extremely urgent research topic wo rldwide.In recent years,the technology of solar vapor generation has been extensively explored as a potential and effective strategy of transforming elements content in seawater.In this review,the basic concepts and theories of metal-based photothermal vapor generation device(PVGD) with excellent optical and thermal regulatory are introduced.In the view of optical regulation,how to achieve high-efficiency localized evaporation in different evaporation system(i.e.,volumetric solar heating and interface solar heating) is discussed;from the aspect of thermal regulation,the importance of selective absorption surface for interfacial PVGD is analyzed.Based on the above discussion and analysis,we summarize the challenges of metal-based desalination device.