TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical pr...TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical properties of the TiOz/Au/TiO2 multilayer films can be tailored to suit different applications. The thickness and optical properties of the Au layer and the quality of the Au-dielectric interfaces are critical for the electrical and optical performance of the Au-dielectric multilayer thin films. At the thickness of 8 rim, the Au layer forms a continuous structure having the lowest resistivity and it must be thin for high transmittance. The multilayer stack can be optimized to have a sheet resistance of 6 D./sq. at a transmittance over 80% at 680 nm in wavelength. The peak transmittance shifts towards the long wavelength region when the thickness of the two TiO2 (upper and lower) layers increases. When the film thickness of the two TiO2 film is 45 nm, a high transmittance value is obtained for the entire visible light wavelength region.展开更多
The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigate...The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.展开更多
ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-r...ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.展开更多
CdSe films are of great interest for use in thin film photoelectric devices. A simple chemical precipitation method is adopted for the first time to synthesise CdSe powder. Films on glass obtained at different substra...CdSe films are of great interest for use in thin film photoelectric devices. A simple chemical precipitation method is adopted for the first time to synthesise CdSe powder. Films on glass obtained at different substrate temperatures TS such as 300, 373, 423 and 473 K have been characterised by X-ray diffraction, optical absorption and Hall measurements.展开更多
Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The stru...Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.展开更多
Tin sulfide(Snx Sy/ thin films were prepared by a spray ultrasonic technique on glass substrate at 300℃.The influence of deposition time tD2, 4, 6, 8 and 10 min on different properties of thin films, such as(XRD),...Tin sulfide(Snx Sy/ thin films were prepared by a spray ultrasonic technique on glass substrate at 300℃.The influence of deposition time tD2, 4, 6, 8 and 10 min on different properties of thin films, such as(XRD),photoluminescence(PL) and(UV) spectroscopy visible spectrum and four-point were investigated. X-ray diffraction showed that thin films crystallized in SnS2, SnS, and Sn2S3 phases, but the most prominent one is SnS_2. The results of the(UV) spectroscopy visible spectrum show that the film which was deposited at 4 min has a large transmittance of 60% in the visible region. The photoluminescence spectra exhibited the luminescent peaks in the visible region, which shows its potential application in photovoltaic devices. The electrical resistivity(ρ) values of SnxSy films have changed from 8.1×1064to 1.62Ω·cm with deposition time.展开更多
The Ga_(2)O_(3) films are deposited on the Si and quartz substrates by magnetron sputtering, and annealing. The effects of preparation parameters(such as argon–oxygen flow ratio, sputtering power, sputtering time and...The Ga_(2)O_(3) films are deposited on the Si and quartz substrates by magnetron sputtering, and annealing. The effects of preparation parameters(such as argon–oxygen flow ratio, sputtering power, sputtering time and annealing temperature)on the growth and properties(e.g., surface morphology, crystal structure, optical and electrical properties of the films) are studied by x-ray diffractometer(XRD), scanning electron microscope(SEM), and ultraviolet-visible spectrophotometer(UV-Vis). The results show that the thickness, crystallization quality and surface roughness of the β-Ga_(2)O_(3) film are influenced by those parameters. All β-Ga_(2)O_(3) films show good optical properties. Moreover, the value of bandgap increases with the enlarge of the percentage of oxygen increasing, and decreases with the increase of sputtering power and annealing temperature, indicating that the bandgap is related to the quality of the film and affected by the number of oxygen vacancy defects. The I–V curves show that the Ohmic behavior between metal and β-Ga_(2)O_(3) films is obtained at 900℃. Those results will be helpful for the further research of β-Ga_(2)O_(3) photoelectric semiconductor.展开更多
Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical ...Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6.4 10 4 cm were obtained at a growth temperature of225 C and sputteringpower of 40 W, with carrier mobility of 33.0 cm 2 V 1 s 1 and carrier concentration of 2.8 10 20 cm 3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region.展开更多
Nanostructured C-Cu thin films were deposited by reactive sputtering method and cosputtering method. The relationships between microstructures, properties, and deposition parameters were studied and the results obtain...Nanostructured C-Cu thin films were deposited by reactive sputtering method and cosputtering method. The relationships between microstructures, properties, and deposition parameters were studied and the results obtained from TEM, AFM, and XPS. indicate that the thin films are nanostructural, and have good in-depth uniformity. The selected area electron diffraction (SAED) found that the nanosize Cu particles have the fcc structure and the others are amorphous carbon or nanocrystallized graphitic carbon. The peak positions of the Cu and C in XPS indicate them to be at the elemental state. In the JR transmission spectrum, diamond two-phonon absorption and graphite Reman peaks were observed, which suggests microcrystal diamond particles and graphite components exrist in the C-Cu film. The higher electrical resistivity was obtained.展开更多
Indium oxide (In2O3) thin films are successfully times by an ultrasonic spray technique using Indium chloride deposited on glass substrate at different deposition as the precursor solution; the physical properties o...Indium oxide (In2O3) thin films are successfully times by an ultrasonic spray technique using Indium chloride deposited on glass substrate at different deposition as the precursor solution; the physical properties of these films are characterized by XRD, SEM, and UV-visible. XRD analysis showed that the films are polycrys- talline in nature having a cubic crystal structure and symmetry space group Ia3 with a preferred grain orientation along the (222) plane when the deposition time changes from 4 to 10 min, but when the deposition time equals 13 min we found that the majority of grains preferred the (400) plane. The surface morphology of the In2O3 thin films revealed that the shape of grains changes with the change of the preferential growth orientation. The trans- mittance improvement of In2O3 films was closely related to the good crystalline quality of the films. The optical gap energy is found to increase from 3.46 to 3.79 eV with the increasing of deposition time from 4 to 13 min. The film thickness was varied between 395 and 725 nm. The film grown at 13 min is found to exhibit low resistivity (10-2 Ω.cm), and relatively high transmittance (- 93%).展开更多
Following are the comments for the queries raised by Prof. Pawel E. Tomaszewski on our published paper entitled "Structural, Optical, and Electrical Properties of Zn-Doped CdO Thin Films Fabricated by a Simplified Sp...Following are the comments for the queries raised by Prof. Pawel E. Tomaszewski on our published paper entitled "Structural, Optical, and Electrical Properties of Zn-Doped CdO Thin Films Fabricated by a Simplified Spray Pyrolysis Technique" by K. Usharani and A.R. Balu published in Acta Metall. Sin.展开更多
The commented paper [1] presents the results on structural, optical, and electrical properties of Zn-doped CdO thin films. Unfortunately, there are several mistakes and errors not found by any of referees. It is neces...The commented paper [1] presents the results on structural, optical, and electrical properties of Zn-doped CdO thin films. Unfortunately, there are several mistakes and errors not found by any of referees. It is necessary to show these mistakes or misleading statements to avoid their use in the future papers by authors and other peoples.展开更多
Al doped ZnO(AZO) films deposited on glass substrates through the atomic layer deposition(ALD)technique are investigated with various temperatures from 100 to 250 °C and different Zn : Al cycle ratios from20...Al doped ZnO(AZO) films deposited on glass substrates through the atomic layer deposition(ALD)technique are investigated with various temperatures from 100 to 250 °C and different Zn : Al cycle ratios from20 : 0 to 20 : 3. Surface morphology, structure, optical and electrical properties of obtained AZO films are studied in detail. The Al composition of the AZO films is varied by controlling the ratio of Zn : Al. We achieve an excellent AZO thin film with a resistivity of 2.14 × 10^(-3)Ω·cm and high optical transmittance deposited at 150 °C with20 : 2 Zn : Al cycle ratio. This kind of AZO thin films exhibit great potential for optoelectronics device application.展开更多
Owing to both of its high carrier concentration and large band gap, ZnO:Al (ZAO) films which is an n-type degenerate semiconductor, exhibits low resistance and high transmittance in the visible range. This work studie...Owing to both of its high carrier concentration and large band gap, ZnO:Al (ZAO) films which is an n-type degenerate semiconductor, exhibits low resistance and high transmittance in the visible range. This work studies the crystal structure, optical and electrical properties and preparation methods of ZAO films, and discusses the existing problems and application prospective of ZAO films.展开更多
The aim of this work is to investigate the dependence of Zn S thin films structural and optical properties with the solution flow rate during the deposition using an ultrasonic spray method. The solution flow rate ran...The aim of this work is to investigate the dependence of Zn S thin films structural and optical properties with the solution flow rate during the deposition using an ultrasonic spray method. The solution flow rate ranged from 10 to 50 m L/h and the substrate temperature was maintained at 450 °C. The effect of the solution flow rate on the properties of Zn S thin films was investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), optical transmittance spectroscopy(UV–V) and the four-point method. The X-ray diffraction analysis showed that the deposited material was pure zinc sulphide, it has a cubic sphalerite structure with preferential orientation along the(111) direction. The grain size values were calculated and found to be between 38 to 82 nm.SEM analysis revealed that the deposited thin films have good adherence to the substrate surfaces, are homogeneous and have high density. The average transmission of all films is up more than 65% in the range wavelength from 200 to 1100 nm and their band gap energy values were found between 3.5–3.92 e V. The obtained film thickness varies from 390 to 1040 nm. Moreover, the electric resistivity of the deposited films increases with the increasing of the solution flow rate between 3.51 × 10^5 and 11 × 10^5 Ω·cm.展开更多
Tungsten doped indium oxide (IWO) thin films were deposited on glass substrate at room temperature by radio frequency reactive magnetron sputtering. Chemical states analysis was carried out, indicating that valence ...Tungsten doped indium oxide (IWO) thin films were deposited on glass substrate at room temperature by radio frequency reactive magnetron sputtering. Chemical states analysis was carried out, indicating that valence states of element W in the films were W4+ and W6+. The effects of sputtering power and film thickness on the surface morphology, optical and electrical properties of IWO thin films were investigated. The IWO thin films had high transmittance in near infrared (NIR) spectral range. The resistivity, carrier mobility and carrier concentration owned their respective optimum values as sputtering power and thickness changed. The asdeposited IWO film with the minimum resistivity of 3.23 × 10^-4 Ω cm was obtained at a sputtering power of 50 W, with carrier mobility of 27.1 cm2 V-1 s-1, carrier concentration of 7.15 × 10^20 cm-3, average transmittance about 80% in visible region and above 75% in NIR region. It may meet the application requirement of high conductivity and transparency in NIR wavelength region.展开更多
文摘TiO2/Au/TiO2 multilayer thin films were deposited at polymer substrate at room temperature using dc (direct current) magnetron sputtering method. By varying the thickness of each layer, the optical and electrical properties of the TiOz/Au/TiO2 multilayer films can be tailored to suit different applications. The thickness and optical properties of the Au layer and the quality of the Au-dielectric interfaces are critical for the electrical and optical performance of the Au-dielectric multilayer thin films. At the thickness of 8 rim, the Au layer forms a continuous structure having the lowest resistivity and it must be thin for high transmittance. The multilayer stack can be optimized to have a sheet resistance of 6 D./sq. at a transmittance over 80% at 680 nm in wavelength. The peak transmittance shifts towards the long wavelength region when the thickness of the two TiO2 (upper and lower) layers increases. When the film thickness of the two TiO2 film is 45 nm, a high transmittance value is obtained for the entire visible light wavelength region.
基金financially supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No. 2009AA03Z428)National Student Innovative Experiment Plan
文摘The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.
基金Project supported by the Innovation Foundation of Beijing University of Aeronautics and Astronautics for PhD Graduates, China (Grant No. 292122)the Equipment Research Foundation of China (Grant No. 373974)
文摘ZnO thin films co-doped with A1 and Sb with different concentrations and a fixed molar ratio of AlCl3 to SbCl3 at 1:2, are prepared by a sol-gel spin-coating method on glass annealed at 550 ℃ for 2 h in air. The x-ray diffraction results confirm that the ZnO thin films co-doped with Al distortion, and the biaxial stresses are 1.03× 10^8. 3.26× 10^8 and Sb are of wurtzite hexagonal ZnO with a very small 5.23 × 10^8, and 6.97× 10^8 Pa, corresponding to those of the ZnO thin films co-doped with Al and Sb in concentrations of 1.5, 3.0, 4.5, 6.0 at% respectively. The optical properties reveal that the ZnO thin films co-doped with Al and Sb have obviously enhanced transmittance in the visible region. The electrical properties show that ZnO thin film co-doped with Al and Sb in a concentration of 1.5 at% has a lowest resistivity of 2.5 Ω·cm.
文摘CdSe films are of great interest for use in thin film photoelectric devices. A simple chemical precipitation method is adopted for the first time to synthesise CdSe powder. Films on glass obtained at different substrate temperatures TS such as 300, 373, 423 and 473 K have been characterised by X-ray diffraction, optical absorption and Hall measurements.
基金the Program for New Century Excellent Talents in Universities, MOE, China (No. NCET-05-0764)the Tackle Key Problems on Scientific Technology Foundation of Chongqing Municipality (Nos. CSTC2005AA4006-A6 and CSTC2004AC4034)+2 种基金the Natural Science Foundation of Chongqing Municipality (No. CSTC2005BA4016)China Postdoctoral Science Foundation (No. 2005037544)the Inno-base for Graduates of Chongqing University (No. 200506Y1B0240131).
文摘Highly conductive and transparent Al-doped ZnO (AZO) thin films were prepared from a zinc target containing Al (1.5 wt.%) by direct current (DC) and radio frequency (RF) reactive magnetron sputtering. The structural, optical, and electrical properties of AZO films as-deposited and submitted to annealing treatment (at 300 and 400℃, respectively) were characterized using various techniques. The experimental results show that the properties of AZO thin films can be further improved by annealing treatment. The crystallinity of ZnO films improves after annealing treatment. The transmittances of the AZO thin films prepared by DC and RF reactive magnetron sputtering are up to 80% and 85% in the visible region, respectively. The electrical resistivity of AZO thin films prepared by DC reactive magnetron sputtering can be as low as 8.06 x 10-4 Ωcm after annealing treatment. It was also found that AZO thin films prepared by RF reactive magnetron sputtering have better structural and optical properties than that prepared by DC reactive magnetron sputtering.
文摘Tin sulfide(Snx Sy/ thin films were prepared by a spray ultrasonic technique on glass substrate at 300℃.The influence of deposition time tD2, 4, 6, 8 and 10 min on different properties of thin films, such as(XRD),photoluminescence(PL) and(UV) spectroscopy visible spectrum and four-point were investigated. X-ray diffraction showed that thin films crystallized in SnS2, SnS, and Sn2S3 phases, but the most prominent one is SnS_2. The results of the(UV) spectroscopy visible spectrum show that the film which was deposited at 4 min has a large transmittance of 60% in the visible region. The photoluminescence spectra exhibited the luminescent peaks in the visible region, which shows its potential application in photovoltaic devices. The electrical resistivity(ρ) values of SnxSy films have changed from 8.1×1064to 1.62Ω·cm with deposition time.
基金Project supported by the Science and Technology Major Project of Shanxi Province,China (Grant No.20181102013)the “1331 Project” Engineering Research Center of Shanxi Province,China (Grant No.PT201801)the Natural Science Foundation of Shanxi Province,China (Grant No.201801D221131)。
文摘The Ga_(2)O_(3) films are deposited on the Si and quartz substrates by magnetron sputtering, and annealing. The effects of preparation parameters(such as argon–oxygen flow ratio, sputtering power, sputtering time and annealing temperature)on the growth and properties(e.g., surface morphology, crystal structure, optical and electrical properties of the films) are studied by x-ray diffractometer(XRD), scanning electron microscope(SEM), and ultraviolet-visible spectrophotometer(UV-Vis). The results show that the thickness, crystallization quality and surface roughness of the β-Ga_(2)O_(3) film are influenced by those parameters. All β-Ga_(2)O_(3) films show good optical properties. Moreover, the value of bandgap increases with the enlarge of the percentage of oxygen increasing, and decreases with the increase of sputtering power and annealing temperature, indicating that the bandgap is related to the quality of the film and affected by the number of oxygen vacancy defects. The I–V curves show that the Ohmic behavior between metal and β-Ga_(2)O_(3) films is obtained at 900℃. Those results will be helpful for the further research of β-Ga_(2)O_(3) photoelectric semiconductor.
基金supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No.2009AA03Z428)
文摘Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6.4 10 4 cm were obtained at a growth temperature of225 C and sputteringpower of 40 W, with carrier mobility of 33.0 cm 2 V 1 s 1 and carrier concentration of 2.8 10 20 cm 3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region.
文摘Nanostructured C-Cu thin films were deposited by reactive sputtering method and cosputtering method. The relationships between microstructures, properties, and deposition parameters were studied and the results obtained from TEM, AFM, and XPS. indicate that the thin films are nanostructural, and have good in-depth uniformity. The selected area electron diffraction (SAED) found that the nanosize Cu particles have the fcc structure and the others are amorphous carbon or nanocrystallized graphitic carbon. The peak positions of the Cu and C in XPS indicate them to be at the elemental state. In the JR transmission spectrum, diamond two-phonon absorption and graphite Reman peaks were observed, which suggests microcrystal diamond particles and graphite components exrist in the C-Cu film. The higher electrical resistivity was obtained.
文摘Indium oxide (In2O3) thin films are successfully times by an ultrasonic spray technique using Indium chloride deposited on glass substrate at different deposition as the precursor solution; the physical properties of these films are characterized by XRD, SEM, and UV-visible. XRD analysis showed that the films are polycrys- talline in nature having a cubic crystal structure and symmetry space group Ia3 with a preferred grain orientation along the (222) plane when the deposition time changes from 4 to 10 min, but when the deposition time equals 13 min we found that the majority of grains preferred the (400) plane. The surface morphology of the In2O3 thin films revealed that the shape of grains changes with the change of the preferential growth orientation. The trans- mittance improvement of In2O3 films was closely related to the good crystalline quality of the films. The optical gap energy is found to increase from 3.46 to 3.79 eV with the increasing of deposition time from 4 to 13 min. The film thickness was varied between 395 and 725 nm. The film grown at 13 min is found to exhibit low resistivity (10-2 Ω.cm), and relatively high transmittance (- 93%).
文摘Following are the comments for the queries raised by Prof. Pawel E. Tomaszewski on our published paper entitled "Structural, Optical, and Electrical Properties of Zn-Doped CdO Thin Films Fabricated by a Simplified Spray Pyrolysis Technique" by K. Usharani and A.R. Balu published in Acta Metall. Sin.
文摘The commented paper [1] presents the results on structural, optical, and electrical properties of Zn-doped CdO thin films. Unfortunately, there are several mistakes and errors not found by any of referees. It is necessary to show these mistakes or misleading statements to avoid their use in the future papers by authors and other peoples.
基金Project supported by the State Key Development Program for Basic Research of China(Nos.2011CBA00706,2011CBA00707)the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan(No.13JCZDJC26900)
文摘Al doped ZnO(AZO) films deposited on glass substrates through the atomic layer deposition(ALD)technique are investigated with various temperatures from 100 to 250 °C and different Zn : Al cycle ratios from20 : 0 to 20 : 3. Surface morphology, structure, optical and electrical properties of obtained AZO films are studied in detail. The Al composition of the AZO films is varied by controlling the ratio of Zn : Al. We achieve an excellent AZO thin film with a resistivity of 2.14 × 10^(-3)Ω·cm and high optical transmittance deposited at 150 °C with20 : 2 Zn : Al cycle ratio. This kind of AZO thin films exhibit great potential for optoelectronics device application.
基金Funded by the foundation for key projects in 2000 of the Science and Technology Committee of Chongqing China (No.2000-6214).
文摘Owing to both of its high carrier concentration and large band gap, ZnO:Al (ZAO) films which is an n-type degenerate semiconductor, exhibits low resistance and high transmittance in the visible range. This work studies the crystal structure, optical and electrical properties and preparation methods of ZAO films, and discusses the existing problems and application prospective of ZAO films.
文摘The aim of this work is to investigate the dependence of Zn S thin films structural and optical properties with the solution flow rate during the deposition using an ultrasonic spray method. The solution flow rate ranged from 10 to 50 m L/h and the substrate temperature was maintained at 450 °C. The effect of the solution flow rate on the properties of Zn S thin films was investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), optical transmittance spectroscopy(UV–V) and the four-point method. The X-ray diffraction analysis showed that the deposited material was pure zinc sulphide, it has a cubic sphalerite structure with preferential orientation along the(111) direction. The grain size values were calculated and found to be between 38 to 82 nm.SEM analysis revealed that the deposited thin films have good adherence to the substrate surfaces, are homogeneous and have high density. The average transmission of all films is up more than 65% in the range wavelength from 200 to 1100 nm and their band gap energy values were found between 3.5–3.92 e V. The obtained film thickness varies from 390 to 1040 nm. Moreover, the electric resistivity of the deposited films increases with the increasing of the solution flow rate between 3.51 × 10^5 and 11 × 10^5 Ω·cm.
基金financially supported by the National Natural Science Foundation of China(No.50902006)Aviation Science Foundation of China(2012zf51066)
文摘Tungsten doped indium oxide (IWO) thin films were deposited on glass substrate at room temperature by radio frequency reactive magnetron sputtering. Chemical states analysis was carried out, indicating that valence states of element W in the films were W4+ and W6+. The effects of sputtering power and film thickness on the surface morphology, optical and electrical properties of IWO thin films were investigated. The IWO thin films had high transmittance in near infrared (NIR) spectral range. The resistivity, carrier mobility and carrier concentration owned their respective optimum values as sputtering power and thickness changed. The asdeposited IWO film with the minimum resistivity of 3.23 × 10^-4 Ω cm was obtained at a sputtering power of 50 W, with carrier mobility of 27.1 cm2 V-1 s-1, carrier concentration of 7.15 × 10^20 cm-3, average transmittance about 80% in visible region and above 75% in NIR region. It may meet the application requirement of high conductivity and transparency in NIR wavelength region.