This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The go...This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.展开更多
当前的OCR(optica l character recogn ition)系统对手写、打印文本都有很高的识别率,但是缺少对数学公式的结构进行分析及重组的功能.为此,将程序设计语言编译程序的基本设计方法用于数学公式的结构分析.重点介绍了上下标的定位、基于L...当前的OCR(optica l character recogn ition)系统对手写、打印文本都有很高的识别率,但是缺少对数学公式的结构进行分析及重组的功能.为此,将程序设计语言编译程序的基本设计方法用于数学公式的结构分析.重点介绍了上下标的定位、基于LL(1)文法的表达式构成规则和公式结构分析器的设计,并简略介绍了基于神经网络的数学符号识别方法.对于印刷体科学文献中的数学表达式,先通过预处理和分类过程识别每一个数学符号,得到按左边界排序的一串字符.然后通过结构分析器,进行上下标的定位以及前后关系的确定.最后把结构分析器生成的语法树转换成可编辑的L aT ex格式.实例证明得到了比较满意的结果.展开更多
为解决复杂背景中准确地进行文字分割的问题,提出了一种应用stroke滤波器进行文本分割的新方法。首先进行stroke滤波器的合理设计,并应用所设计的stroke滤波器来判别文本的彩色极性,得到初次分割的二值图。然后进行基于区域生长的文字...为解决复杂背景中准确地进行文字分割的问题,提出了一种应用stroke滤波器进行文本分割的新方法。首先进行stroke滤波器的合理设计,并应用所设计的stroke滤波器来判别文本的彩色极性,得到初次分割的二值图。然后进行基于区域生长的文字分割。最后,应用OCR(optical character recognition)模块提高文本分割的整体性能。将提出的算法与其他算法进行了比较,结果表明,所提算法更为有效。展开更多
基金The results and knowledge included herein have been obtained owing to support from the following institutional grant.Internal grant agency of the Faculty of Economics and Management,Czech University of Life Sciences Prague,Grant No.2023A0004-“Text Segmentation Methods of Historical Alphabets in OCR Development”.https://iga.pef.czu.cz/.Funds were granted to T.Novák,A.Hamplová,O.Svojše,and A.Veselýfrom the author team.
文摘This study presents a single-class and multi-class instance segmentation approach applied to ancient Palmyrene inscriptions,employing two state-of-the-art deep learning algorithms,namely YOLOv8 and Roboflow 3.0.The goal is to contribute to the preservation and understanding of historical texts,showcasing the potential of modern deep learning methods in archaeological research.Our research culminates in several key findings and scientific contributions.We comprehensively compare the performance of YOLOv8 and Roboflow 3.0 in the context of Palmyrene character segmentation—this comparative analysis mainly focuses on the strengths and weaknesses of each algorithm in this context.We also created and annotated an extensive dataset of Palmyrene inscriptions,a crucial resource for further research in the field.The dataset serves for training and evaluating the segmentation models.We employ comparative evaluation metrics to quantitatively assess the segmentation results,ensuring the reliability and reproducibility of our findings and we present custom visualization tools for predicted segmentation masks.Our study advances the state of the art in semi-automatic reading of Palmyrene inscriptions and establishes a benchmark for future research.The availability of the Palmyrene dataset and the insights into algorithm performance contribute to the broader understanding of historical text analysis.
文摘当前的OCR(optica l character recogn ition)系统对手写、打印文本都有很高的识别率,但是缺少对数学公式的结构进行分析及重组的功能.为此,将程序设计语言编译程序的基本设计方法用于数学公式的结构分析.重点介绍了上下标的定位、基于LL(1)文法的表达式构成规则和公式结构分析器的设计,并简略介绍了基于神经网络的数学符号识别方法.对于印刷体科学文献中的数学表达式,先通过预处理和分类过程识别每一个数学符号,得到按左边界排序的一串字符.然后通过结构分析器,进行上下标的定位以及前后关系的确定.最后把结构分析器生成的语法树转换成可编辑的L aT ex格式.实例证明得到了比较满意的结果.
文摘为解决复杂背景中准确地进行文字分割的问题,提出了一种应用stroke滤波器进行文本分割的新方法。首先进行stroke滤波器的合理设计,并应用所设计的stroke滤波器来判别文本的彩色极性,得到初次分割的二值图。然后进行基于区域生长的文字分割。最后,应用OCR(optical character recognition)模块提高文本分割的整体性能。将提出的算法与其他算法进行了比较,结果表明,所提算法更为有效。