Continuous phase plate(CPP),which has a function of beam shaping in laser systems,is one kind of important diffractive optics.Based on the Fourier transform of the Gerchberg-Saxton(G-S) algorithm for designing CPP...Continuous phase plate(CPP),which has a function of beam shaping in laser systems,is one kind of important diffractive optics.Based on the Fourier transform of the Gerchberg-Saxton(G-S) algorithm for designing CPP,we proposed an optical diffraction method according to the real system conditions.A thin lens can complete the Fourier transform of the input signal and the inverse propagation of light can be implemented in a program.Using both of the two functions can realize the iteration process to calculate the near-field distribution of light and the far-field repeatedly,which is similar to the G-S algorithm.The results show that using the optical diffraction method can design a CPP for a complicated laser system,and make the CPP have abilities of beam shaping and phase compensation for the phase aberration of the system.The method can improve the adaptation of the phase plate in systems with phase aberrations.展开更多
Optical transmission technologies have gone through several generations of development.Spectral efficiency has significant ly improved,and industry has begun to search for an answer to a basic question:What are the f...Optical transmission technologies have gone through several generations of development.Spectral efficiency has significant ly improved,and industry has begun to search for an answer to a basic question:What are the fundamental linear and nonlin ear signal channel limitations of the Shannon theory when there is no compensation in an optical fiber transmission system?Next-generation technologies should exceed the 100G transmis sion capability of coherent systems in order to approach the Shannon limit.Spectral efficiency first needs to be improved be fore overall transmission capability can be improved.The means to improve spectral efficiency include more complex modulation formats and channel encoding/decoding algorithms,prefiltering with multisymbol detection,optical OFDM and Ny quist WDM multicarrier technologies,and nonlinearity compen sation.With further optimization,these technologies will most likely be incorporated into beyond-100G optical transport sys tems to meet bandwidth demand.展开更多
This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of po...This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40×43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift- keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.展开更多
A system of jointly transferring time signals with a rate of 1 pulse per second (PPS) and frequency signals of 10 MHz via a dense wavelength division multiplex-based (DWDM) fiber is demonstrated in this paper. The...A system of jointly transferring time signals with a rate of 1 pulse per second (PPS) and frequency signals of 10 MHz via a dense wavelength division multiplex-based (DWDM) fiber is demonstrated in this paper. The noises of the fiber links are suppressed and compensated for by a controlled fiber delay line. A method of calibrating and characterizing time is described. The 1PPS is synchronized by feed-forward calibrating the fiber delays precisely. The system is experimen- tally examined via a 110 km spooled fiber in laboratory. The frequency stabilities of the user end with compensation are 1.8x 10-14 at 1 s and 2.0x 10-17 at 104 s average time. The calculated uncertainty of time synchronization is 13.1 ps, whereas the direct measurement of the uncertainty is 12 ps. Next, the frequency and 1PPS are transferred via a metropoli- tan area optical fiber network from one central site to two remote sites with distances of 14 km and 110 km. The frequency stabilities of 14 km link reach 3.0x 10-14 averaged in 1 s and 1.4x 10-17 in 104 s respectively; and the stabilities of 110 km link are 8.3 x 10-14 and 1.7 x 10-17, respectively. The accuracies of synchronization are estimated to be 12.3 ps for the 14 km link and 13.1 ps for the 110 km link, respectively.展开更多
GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point...GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point optical monitoring method.展开更多
In this paper, we demonstrate a scheme for compensating distorted optical vortex beams carrying orbital angular momentum. By inputting the intensity profile into the Gerchberg–Saxton algorithm [Optik 35, 237(1972)], ...In this paper, we demonstrate a scheme for compensating distorted optical vortex beams carrying orbital angular momentum. By inputting the intensity profile into the Gerchberg–Saxton algorithm [Optik 35, 237(1972)], the pre-compensation phase mask can be acquired. No additional probe beams are introduced, and all the computing is aiming at the transmitted vortex beams. The distorted vortex beams are investigated experimentally before and after pre-compensation, showing favorable compensation performance. This scheme will find applications in the areas of rotation detection, optical communications, and so on.展开更多
We report an experiment of adaptive compensation for first-order polarization mode dispersion (PMD) in 10-Gb/s return zero (RZ) optical communication system. The compensated differential group delay (DGD) is up to 30 ...We report an experiment of adaptive compensation for first-order polarization mode dispersion (PMD) in 10-Gb/s return zero (RZ) optical communication system. The compensated differential group delay (DGD) is up to 30 ps. The quasi-real-time, less than one second, PMD compensation is realized. In the experiment, for the first time, the algorithm so-called particle swarm optimization (PSO) is used to control feedback compensation system.展开更多
An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of ...An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.展开更多
The Er-doped concentric-cores dispersion compensating fiber (EDDCF) has been demonstrated. The rare earth has been doped as a ring around the inner core. We have obtained 14-dB gain at 1550 nm (using 100-mW pump power...The Er-doped concentric-cores dispersion compensating fiber (EDDCF) has been demonstrated. The rare earth has been doped as a ring around the inner core. We have obtained 14-dB gain at 1550 nm (using 100-mW pump power and 980-nm wavelength) with dispersion of about -165 ps/(km·nm). It is useful for the optical fiber network where amplification as well as negative dispersion are necessary.展开更多
We propose a compensation technique based on pulse reference for intensity-modulated optical fiber sensors that can compensate the power fluctuation of the light source, the change of optical components transmission l...We propose a compensation technique based on pulse reference for intensity-modulated optical fiber sensors that can compensate the power fluctuation of the light source, the change of optical components transmission loss, and the coupler splitting ratio. The theoretical principle of this compensation technique is analyzed and a temperature sensor based on fiber coating-covered optical microfiber is carried out to demonstrate the compensation effect. The system noise is measured to be 0.0005 dB with the temperature sensitivity reaching -0.063 dB/℃, and the output drift is 0.006 dB in 2 h at room temperature. The output shows a slight variation (0.0061 dB) when the light source and the common liKht path suffer a 3 dB attenuation fluctuation.展开更多
An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of ...An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.展开更多
The common and traditional method for optical dispersion compensation is concatenating the transmitting optical fiber by a compensating optical fiber having a high-negative dispersion coefficient. In this Letter, we t...The common and traditional method for optical dispersion compensation is concatenating the transmitting optical fiber by a compensating optical fiber having a high-negative dispersion coefficient. In this Letter, we take the opposite direction and show how an optical fiber with a high-positive dispersion coefficient is used for dispersion compensation. Our optical dispersion compensating structure is the optical implementation of an iterative algorithm in signal processing. The proposed dispersion compensating system is constructed by cascading a number of compensating sub-systems, and its compensation capability is improved by increasing the number of embedded sub-systems. We also show that the compensation capability is a trade-off between the transmission length and bandwidth. We use the simulation results to validate the performance of the introduced dispersion compensating module. Photonic crystal fibers with high-positive dispersion coefficients can be used for constructing the proposed optical dispersion compensating module.展开更多
We develop a quantum key distribution (QKD) system with fast active optical path length compensation. A rapid and reliable active optical path length compensation scheme is proposed and applied to a plug-and-play QKD ...We develop a quantum key distribution (QKD) system with fast active optical path length compensation. A rapid and reliable active optical path length compensation scheme is proposed and applied to a plug-and-play QKD system. The system monitors changes in key rates and controls it is own operation automatically. The system achieves its optimal performance within three seconds of operation, which includes a sifted key rate of 5.5 kbps and a quantum bit error rate of less than 2% after an abrupt temperature variation along the 25 km quantum channel. The system also operates well over a 24 h period while completing more than 60 active optical path length compensations.展开更多
The presentation will give an overview over different classes of signal impairments in ultra-long-haul and high-speed optical WDM transmission systems and adequate approaches for suppression, mitigation or compensatio...The presentation will give an overview over different classes of signal impairments in ultra-long-haul and high-speed optical WDM transmission systems and adequate approaches for suppression, mitigation or compensation are discussed.展开更多
We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be...We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be 0.0005 dB, which makes it possible for the detection of the minor reflectivity change of the film at different temperatures. The temperature sensitivity is 0.0034 d B/℃, so the resolution can achieve 0.2℃. The maximum difference of the temperature output values of the sensor at 20℃ at different points in time is 0.39℃. The low cost, ultra-small size, high stability, and good repeatability of the sensor make it a promising temperature sensing device for practical application.展开更多
文摘Continuous phase plate(CPP),which has a function of beam shaping in laser systems,is one kind of important diffractive optics.Based on the Fourier transform of the Gerchberg-Saxton(G-S) algorithm for designing CPP,we proposed an optical diffraction method according to the real system conditions.A thin lens can complete the Fourier transform of the input signal and the inverse propagation of light can be implemented in a program.Using both of the two functions can realize the iteration process to calculate the near-field distribution of light and the far-field repeatedly,which is similar to the G-S algorithm.The results show that using the optical diffraction method can design a CPP for a complicated laser system,and make the CPP have abilities of beam shaping and phase compensation for the phase aberration of the system.The method can improve the adaptation of the phase plate in systems with phase aberrations.
基金supported by National High-Tech Research and Development Program of China under Grant No.2013AA010501
文摘Optical transmission technologies have gone through several generations of development.Spectral efficiency has significant ly improved,and industry has begun to search for an answer to a basic question:What are the fundamental linear and nonlin ear signal channel limitations of the Shannon theory when there is no compensation in an optical fiber transmission system?Next-generation technologies should exceed the 100G transmis sion capability of coherent systems in order to approach the Shannon limit.Spectral efficiency first needs to be improved be fore overall transmission capability can be improved.The means to improve spectral efficiency include more complex modulation formats and channel encoding/decoding algorithms,prefiltering with multisymbol detection,optical OFDM and Ny quist WDM multicarrier technologies,and nonlinearity compen sation.With further optimization,these technologies will most likely be incorporated into beyond-100G optical transport sys tems to meet bandwidth demand.
基金Project supported by the Huawei Technology Project (Grant No.YBON2008014)the National "863" High Technology Projects (Grant No.2009AA01Z224)
文摘This paper reports that the designed optical polarization mode dispersion compensator shows a good performance under the real-time variation of differential group delay, state of polarization and principal state of polarization in a (40×43)-Gb/s dense-wavelength-multiplexing, 1200-km enhanced return-to-zero differential-quadrature-phase-shift- keying (RZ-DQPSK) system. The polarization mode dispersion tolerance of the system is improved by 26 ps using the optical polarization mode dispersion compensator. The short and long time stabilities are tested with the bit error ratio recorded.
基金supported by the National Natural Science Foundation of China(Grant No.61405227)
文摘A system of jointly transferring time signals with a rate of 1 pulse per second (PPS) and frequency signals of 10 MHz via a dense wavelength division multiplex-based (DWDM) fiber is demonstrated in this paper. The noises of the fiber links are suppressed and compensated for by a controlled fiber delay line. A method of calibrating and characterizing time is described. The 1PPS is synchronized by feed-forward calibrating the fiber delays precisely. The system is experimen- tally examined via a 110 km spooled fiber in laboratory. The frequency stabilities of the user end with compensation are 1.8x 10-14 at 1 s and 2.0x 10-17 at 104 s average time. The calculated uncertainty of time synchronization is 13.1 ps, whereas the direct measurement of the uncertainty is 12 ps. Next, the frequency and 1PPS are transferred via a metropoli- tan area optical fiber network from one central site to two remote sites with distances of 14 km and 110 km. The frequency stabilities of 14 km link reach 3.0x 10-14 averaged in 1 s and 1.4x 10-17 in 104 s respectively; and the stabilities of 110 km link are 8.3 x 10-14 and 1.7 x 10-17, respectively. The accuracies of synchronization are estimated to be 12.3 ps for the 14 km link and 13.1 ps for the 110 km link, respectively.
文摘GFFs with less than 0.4 dB peak-to-peak error functions are routinely fabricated using commercially available coating machines by utilizing the natural error compensation mechanism of wavelength variable turning point optical monitoring method.
基金National Basic Research Program of China(973 Program)(2014CB340002,2014CB340004)
文摘In this paper, we demonstrate a scheme for compensating distorted optical vortex beams carrying orbital angular momentum. By inputting the intensity profile into the Gerchberg–Saxton algorithm [Optik 35, 237(1972)], the pre-compensation phase mask can be acquired. No additional probe beams are introduced, and all the computing is aiming at the transmitted vortex beams. The distorted vortex beams are investigated experimentally before and after pre-compensation, showing favorable compensation performance. This scheme will find applications in the areas of rotation detection, optical communications, and so on.
基金This work was supported by the National "863"High Technology Prohect of China(No.2001aa122041),and the National Natural Science Foundation of China(No.60072042).
文摘We report an experiment of adaptive compensation for first-order polarization mode dispersion (PMD) in 10-Gb/s return zero (RZ) optical communication system. The compensated differential group delay (DGD) is up to 30 ps. The quasi-real-time, less than one second, PMD compensation is realized. In the experiment, for the first time, the algorithm so-called particle swarm optimization (PSO) is used to control feedback compensation system.
基金This work was supported by the National "863" High Technology Project (No. 2001AA122041) and the National Natural Science Foundation of China (No. 60072042 and 60377026).
文摘An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.
文摘The Er-doped concentric-cores dispersion compensating fiber (EDDCF) has been demonstrated. The rare earth has been doped as a ring around the inner core. We have obtained 14-dB gain at 1550 nm (using 100-mW pump power and 980-nm wavelength) with dispersion of about -165 ps/(km·nm). It is useful for the optical fiber network where amplification as well as negative dispersion are necessary.
基金supported by the National Natural Science Foundation of China(Nos.61505258 and 11574397)the Scientific Research Project of the National University of Defense Technology(No.JC15-11-02)
文摘We propose a compensation technique based on pulse reference for intensity-modulated optical fiber sensors that can compensate the power fluctuation of the light source, the change of optical components transmission loss, and the coupler splitting ratio. The theoretical principle of this compensation technique is analyzed and a temperature sensor based on fiber coating-covered optical microfiber is carried out to demonstrate the compensation effect. The system noise is measured to be 0.0005 dB with the temperature sensitivity reaching -0.063 dB/℃, and the output drift is 0.006 dB in 2 h at room temperature. The output shows a slight variation (0.0061 dB) when the light source and the common liKht path suffer a 3 dB attenuation fluctuation.
文摘An experiment of two-stage adaptive compensation for polarization mode dispersion (PMD) iu a 40-Gb/s optical time-division multiplexed communication system is reported. The PMD monitoring technique based on degree of polarization was adopted. The particle swarm optimization (PSO) algorithm was introduced in adaptive PMD compensation. The comparison was made to estimate the effectiveness between PSO algorithms with global neighborhood structure (GPSO) and with local neighborhood structure (LPSO). The LPSO algorithm is shown to be more effective to search global optimum for PMD compensation than GPSO algorithm. The two-stage PMD compensator is shown to be effective for both first- and second-order PMD, and he compensator is shown to be bit rate independent. The optimum searching time is within one huudred milliseconds.
文摘The common and traditional method for optical dispersion compensation is concatenating the transmitting optical fiber by a compensating optical fiber having a high-negative dispersion coefficient. In this Letter, we take the opposite direction and show how an optical fiber with a high-positive dispersion coefficient is used for dispersion compensation. Our optical dispersion compensating structure is the optical implementation of an iterative algorithm in signal processing. The proposed dispersion compensating system is constructed by cascading a number of compensating sub-systems, and its compensation capability is improved by increasing the number of embedded sub-systems. We also show that the compensation capability is a trade-off between the transmission length and bandwidth. We use the simulation results to validate the performance of the introduced dispersion compensating module. Photonic crystal fibers with high-positive dispersion coefficients can be used for constructing the proposed optical dispersion compensating module.
基金was supported by the ICT R&D programs of Ministry of Science, ICT and Future Planning/Institute for Information & Communications Technology Promotion (Grant No. B0101-16-1355)the Korea Institute of Science and Technology research program (Grant No. 2E27231)Korea Institute of Science and Technology-Electronics And Telecommunications Research Institute research program (Grant No. 2V05340)
文摘We develop a quantum key distribution (QKD) system with fast active optical path length compensation. A rapid and reliable active optical path length compensation scheme is proposed and applied to a plug-and-play QKD system. The system monitors changes in key rates and controls it is own operation automatically. The system achieves its optimal performance within three seconds of operation, which includes a sifted key rate of 5.5 kbps and a quantum bit error rate of less than 2% after an abrupt temperature variation along the 25 km quantum channel. The system also operates well over a 24 h period while completing more than 60 active optical path length compensations.
文摘The presentation will give an overview over different classes of signal impairments in ultra-long-haul and high-speed optical WDM transmission systems and adequate approaches for suppression, mitigation or compensation are discussed.
基金supported by the National Natural Science Foundation of China(Nos.11574397,61775238,61705262,and 61705263)the Scientific Research Project of National University of Defense Technology(No.JC15-11-02)
文摘We modify the pulse-reference-based compensation technique and propose a low-noise and highly stable optical fiber temperature sensor based on a zinc telluride film-coated fiber tip. The system noise is measured to be 0.0005 dB, which makes it possible for the detection of the minor reflectivity change of the film at different temperatures. The temperature sensitivity is 0.0034 d B/℃, so the resolution can achieve 0.2℃. The maximum difference of the temperature output values of the sensor at 20℃ at different points in time is 0.39℃. The low cost, ultra-small size, high stability, and good repeatability of the sensor make it a promising temperature sensing device for practical application.