We investigate the existence and dynamical stability of multipole gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice.Honeycomb lattices possess a unique band structure,the first an...We investigate the existence and dynamical stability of multipole gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice.Honeycomb lattices possess a unique band structure,the first and second bands intersect at a set of so-called Dirac points.Deformation can result in the merging and disappearance of the Dirac points,and support the gap solitons.We find that the two-dimensional honeycomb optical lattices admit multipole gap solitons.These multipoles can have their bright solitary structures being in-phase or out-of-phase.We also investigate the linear stabilities and nonlinear stabilities of these gap solitons.These results have applications of the localized structures in nonlinear optics,and may helpful for exploiting topological properties of a deformed lattice.展开更多
A numerical model is presented to simulate the influence function of de- formable mirror actuators. The numerical model is formed by Bessel Fourier orthog- onal functions, which are constituted of Bessel orthogonal fu...A numerical model is presented to simulate the influence function of de- formable mirror actuators. The numerical model is formed by Bessel Fourier orthog- onal functions, which are constituted of Bessel orthogonal functions and a Fourier basis. A detailed comparison is presented between the new Bessel Fourier model, the Zernike model, the Gaussian influence function and the modified Gaussian influence function. Numerical experiments indicate that the new numerical model is easy to use and more accurate compared with other numerical models. The new numerical model can be used for describing deformable mirror performances and numerical simulations of adaptive optics systems.展开更多
As the era of nanoelectronics is dawning,CNT(carbon nanotube),a one-dimensional nano material with outstanding properties and performances,has aroused wide attention.In order to study its optical and electrical prop...As the era of nanoelectronics is dawning,CNT(carbon nanotube),a one-dimensional nano material with outstanding properties and performances,has aroused wide attention.In order to study its optical and electrical properties,this paper has researched the influence of tension-twisting deformation,defects,and mixed type on the electronic structure and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N by using the first-principle method.Our findings show that if tension-twisting deformation is conducted,then the geometric structure,bond length,binding energy,band gap and optical properties of B,N doped carbon nanotube superlattices with defects and mixed type will be influenced.As the degree of exerted tension-twisting deformation increases,B,N doped carbon nanotube superlattices become less stable,and B,N doped carbon nanotube superlattices with defects are more stable than that with exerted tension-twisting deformations.Proper tension-twisting deformation can adjust the energy gap of the system;defects can only reduce the energy gap,enhancing the system metallicity;while the mixed type of 5%tension,twisting angle of 15° and atomic defects will significantly increase the energy gap of the system.From the perspective of optical properties,doped carbon nanotubes may transform the system from metallicity into semi-conductivity.展开更多
A bimorph deformable mirror (DM) with a large stroke of more than 30 μm using 35 actuators is presented and characterized for an adaptive optics (AO) confocal scanning laser ophthalmoscope application. Facilitate...A bimorph deformable mirror (DM) with a large stroke of more than 30 μm using 35 actuators is presented and characterized for an adaptive optics (AO) confocal scanning laser ophthalmoscope application. Facilitated with a Shack-Hartmann wavefront sensor, the bimorph DM-based AO operates closed-loop AO corrections for hu- man eyes and reduces wavefront aberrations in most eyes to below 0.1 μm rms. Results from living eyes, including one exhibiting ~5D of myopia and ~2D of astigmatism along with notable high-order aberrations, reveal a prac- tical efficient aberration correction and demonstrate a great benefit for retina imaging, including improving resolution, increasing brightness, and enhancing the contrast of images.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12065022,12005173,11747018,and 11565021)the Natural Science Foundation of Gansu Province of China(Grant No.20JR10RA082)+1 种基金the China Postdoctoral Science Foundation(Grant No.2020M680318)the Scientific Research Foundation of NWNU(Grant No.NWNU-LKQN-16-3)。
文摘We investigate the existence and dynamical stability of multipole gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice.Honeycomb lattices possess a unique band structure,the first and second bands intersect at a set of so-called Dirac points.Deformation can result in the merging and disappearance of the Dirac points,and support the gap solitons.We find that the two-dimensional honeycomb optical lattices admit multipole gap solitons.These multipoles can have their bright solitary structures being in-phase or out-of-phase.We also investigate the linear stabilities and nonlinear stabilities of these gap solitons.These results have applications of the localized structures in nonlinear optics,and may helpful for exploiting topological properties of a deformed lattice.
基金supported by the Opening Project of the Key Laboratory of Astronomical Optics and Technology, Nanjing Institute of Astronomical Optics and Technology, Chinese Academy of Sciences (No. CAS-KLAOT-KF201206)
文摘A numerical model is presented to simulate the influence function of de- formable mirror actuators. The numerical model is formed by Bessel Fourier orthog- onal functions, which are constituted of Bessel orthogonal functions and a Fourier basis. A detailed comparison is presented between the new Bessel Fourier model, the Zernike model, the Gaussian influence function and the modified Gaussian influence function. Numerical experiments indicate that the new numerical model is easy to use and more accurate compared with other numerical models. The new numerical model can be used for describing deformable mirror performances and numerical simulations of adaptive optics systems.
基金supported by the National Natural Science Foundation of China(No.51371049)the Natural Science Foundation of Liaoning Province(No.20102173)
文摘As the era of nanoelectronics is dawning,CNT(carbon nanotube),a one-dimensional nano material with outstanding properties and performances,has aroused wide attention.In order to study its optical and electrical properties,this paper has researched the influence of tension-twisting deformation,defects,and mixed type on the electronic structure and optical properties of the armchair carbon nanotube superlattices doped cyclic alternately with B and N by using the first-principle method.Our findings show that if tension-twisting deformation is conducted,then the geometric structure,bond length,binding energy,band gap and optical properties of B,N doped carbon nanotube superlattices with defects and mixed type will be influenced.As the degree of exerted tension-twisting deformation increases,B,N doped carbon nanotube superlattices become less stable,and B,N doped carbon nanotube superlattices with defects are more stable than that with exerted tension-twisting deformations.Proper tension-twisting deformation can adjust the energy gap of the system;defects can only reduce the energy gap,enhancing the system metallicity;while the mixed type of 5%tension,twisting angle of 15° and atomic defects will significantly increase the energy gap of the system.From the perspective of optical properties,doped carbon nanotubes may transform the system from metallicity into semi-conductivity.
基金supported by the National Science Foundation of China(No.61605210)the National Instrumentation Program(NIP)(No.2012YQ120080)+4 种基金the National Key Research and Development Program of China(No.2016YFC0102500)the Jiangsu Province Science Fund for Distinguished Young Scholars(No.BK20060010)the Frontier Science Research Project of the Chinese Academy of Sciences(No.QYZDB-SSWJSC03)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB02060000)the Zhejiang Province Technology Program(No.2013C33170)
文摘A bimorph deformable mirror (DM) with a large stroke of more than 30 μm using 35 actuators is presented and characterized for an adaptive optics (AO) confocal scanning laser ophthalmoscope application. Facilitated with a Shack-Hartmann wavefront sensor, the bimorph DM-based AO operates closed-loop AO corrections for hu- man eyes and reduces wavefront aberrations in most eyes to below 0.1 μm rms. Results from living eyes, including one exhibiting ~5D of myopia and ~2D of astigmatism along with notable high-order aberrations, reveal a prac- tical efficient aberration correction and demonstrate a great benefit for retina imaging, including improving resolution, increasing brightness, and enhancing the contrast of images.