A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installe...A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.展开更多
基金This project is supported by R&D Foundation of National Petroleum Corporation (CNPC) of China(No.2001411-4).
文摘A fully distributed optical fiber sensor (DOFS) for monitoring long-distance oil pipeline health is proposed based on optical time domain reflectometry (OTDR). A smart and sensitive optical fiber cable is installed along the pipeline acting as a sensor, The experiments show that the cable swells when exposed to oil and induced additional bending losses inside the fiber, and the optical attenuation of the fiber coated by a thin skin with periodical hardness is sensitive to deformation and vibration caused by oil leakage, tampering, or mechanical impact. The region where the additional attenuation occurred is detected and located by DOFS based on OTDR, the types of pipeline accidents are identified according to the characteristics of transmitted optical power received by an optical power meter, Another prototype of DOFS based on a forward traveling frequency-modulated continuous-wave (FMCW) is also proposed to monitor pipeline. The advantages and disadvantages of DOFSs based on OTDR and FMCW are discussed. The experiments show that DOFSs are capable of detecting and locating distant oil pipeline leakages and damages in real time with an estimated precision of ten meters over tens of kilometers.