Hall effect of light is a result of symmetry breaking in spin and/or orbital angular momentum(OAM)possessing optical system and is caused by e.g.refractive index gradient/interface between media or focusing of a spati...Hall effect of light is a result of symmetry breaking in spin and/or orbital angular momentum(OAM)possessing optical system and is caused by e.g.refractive index gradient/interface between media or focusing of a spatially asymmetrical beam,similar to the electric field breaking the symmetry in spin Hall effect for electrons.The angular momentum(AM)conservation law in the ensuing asymmetric system dictates redistribution of spin and orbital angular momentum,and is manifested in spin-orbit,orbit-orbit,and orbit-spin conversions and reorganization,i.e.spin-orbit and orbit-orbit interaction.This AM restructuring in turn requires shifts of the barycenter of the electric field of light.In the present study we show,both analytically and by numerical simulation,how different electric field components are displaced upon tight focusing of an asymmetric light beam having OAM and spin.The relation between field components shifts and the AM components shifts/redistribution is presented too.Moreover,we experimentally demonstrate,for the first time,to the best of our knowledge,the spin-orbit Hall effect of light upon tight focusing in free space.This is achieved using azopolymers as a media detecting longitudinal or z component of the electrical field of light.These findings elucidate the Hall effect of light and may broaden the spectrum of its applications.展开更多
Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structur...Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structured light beams is usually generated using several polarization and spatial phase devices,which decreases the configurability of optical systems.Here,we have designed a kind of polarized optical multi-vortices generator based on the Stokes-Mueller formalism and cross-phase modulation.In our scheme,multi-channel generation of polarized vortex beams can be realized through a single optical element and a single-input Gaussian beam.The polarization states and orbital angular momentum of the generated light beams are all-optically controllable.Furthermore,the proposed polarized optical multi-vortices generator has also been demonstrated experimentally through one-step holographic recording in an azobenzene liquid-crystalline film and the experimental results agree with theoretical analysis.展开更多
The rotatory optics element in the tensor dielectric coefficient matrix is an important para-(meter) for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-(surement) of rotatory...The rotatory optics element in the tensor dielectric coefficient matrix is an important para-(meter) for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-(surement) of rotatory optics element is difficult for the rotatory optical fiber. A simple principle and method for measuring rotatory optics element are put forward in this paper. Firstly by using electromagnetic theory it was demonstrated that the rotatory optics element has a simple linear relation with the rotatory angle, and then the rotatory optics element has a simple linear relation with the magnetic field strength (or bias current in the helix coil) . Secondly a measurement system for the rotatory optics element in the rotatory optical fiber was designed. Using the measurement system the rotatory element can be obtained by measuring the bias current simply.展开更多
In this work the results of polarization researches of low-optical fiber waveguides with conservation of polarization are presented. Obtained results quite convincingly testify regarding a high sensitivity low-mode re...In this work the results of polarization researches of low-optical fiber waveguides with conservation of polarization are presented. Obtained results quite convincingly testify regarding a high sensitivity low-mode regime of work of an optical fiber to anisotropic external influences, in comparison with one-mode regime of work of the same fibre. This result, can represent a big practical value at the realization of high-sensitivity fiber-optical devices of different physical values.展开更多
基金supported by the Russian Science Foundation grant No.22-79-10007.
文摘Hall effect of light is a result of symmetry breaking in spin and/or orbital angular momentum(OAM)possessing optical system and is caused by e.g.refractive index gradient/interface between media or focusing of a spatially asymmetrical beam,similar to the electric field breaking the symmetry in spin Hall effect for electrons.The angular momentum(AM)conservation law in the ensuing asymmetric system dictates redistribution of spin and orbital angular momentum,and is manifested in spin-orbit,orbit-orbit,and orbit-spin conversions and reorganization,i.e.spin-orbit and orbit-orbit interaction.This AM restructuring in turn requires shifts of the barycenter of the electric field of light.In the present study we show,both analytically and by numerical simulation,how different electric field components are displaced upon tight focusing of an asymmetric light beam having OAM and spin.The relation between field components shifts and the AM components shifts/redistribution is presented too.Moreover,we experimentally demonstrate,for the first time,to the best of our knowledge,the spin-orbit Hall effect of light upon tight focusing in free space.This is achieved using azopolymers as a media detecting longitudinal or z component of the electrical field of light.These findings elucidate the Hall effect of light and may broaden the spectrum of its applications.
基金Project supported by the National Natural Science Foundation of China (Grant No.92050116)。
文摘Optical vortices with tunable polarization states and topological charges are widely investigated in various physical systems and practical devices for high-capacity optical communication.However,this kind of structured light beams is usually generated using several polarization and spatial phase devices,which decreases the configurability of optical systems.Here,we have designed a kind of polarized optical multi-vortices generator based on the Stokes-Mueller formalism and cross-phase modulation.In our scheme,multi-channel generation of polarized vortex beams can be realized through a single optical element and a single-input Gaussian beam.The polarization states and orbital angular momentum of the generated light beams are all-optically controllable.Furthermore,the proposed polarized optical multi-vortices generator has also been demonstrated experimentally through one-step holographic recording in an azobenzene liquid-crystalline film and the experimental results agree with theoretical analysis.
文摘The rotatory optics element in the tensor dielectric coefficient matrix is an important para-(meter) for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-(surement) of rotatory optics element is difficult for the rotatory optical fiber. A simple principle and method for measuring rotatory optics element are put forward in this paper. Firstly by using electromagnetic theory it was demonstrated that the rotatory optics element has a simple linear relation with the rotatory angle, and then the rotatory optics element has a simple linear relation with the magnetic field strength (or bias current in the helix coil) . Secondly a measurement system for the rotatory optics element in the rotatory optical fiber was designed. Using the measurement system the rotatory element can be obtained by measuring the bias current simply.
文摘In this work the results of polarization researches of low-optical fiber waveguides with conservation of polarization are presented. Obtained results quite convincingly testify regarding a high sensitivity low-mode regime of work of an optical fiber to anisotropic external influences, in comparison with one-mode regime of work of the same fibre. This result, can represent a big practical value at the realization of high-sensitivity fiber-optical devices of different physical values.