The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back;...The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only ⊥-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 rim, and the sensor can discriminate the target's moving direction easily.展开更多
The output characteristics of optical feedback in a helium neon laser with a birefringent internal cavity are studied systematically in five different regions of the gain curve for the two orthogonally polarized modes...The output characteristics of optical feedback in a helium neon laser with a birefringent internal cavity are studied systematically in five different regions of the gain curve for the two orthogonally polarized modes. When the laser operates in the two end regions of the laser gain curve, one of the two orthogonally polarized modes will be a leading one in optical feedback. Strong mode competition can be observed. However, when the laser operates in the middle region of the laser gain curve, the two modes can oscillate equally with optical feedback. Besides the intensity of the two polarized lights, the total light intensity is also studied at the same time. M-shaped optical feedback curves are found. Particularly, when the average intensities of the two lights are comparable, the intensity modulation curve of the total light is doubled, which can be used to improve the resolution of an optical feedback system.展开更多
Self-mixing interferometry(SMI)is an attractive sensing scheme that typically relies on mono-modal operation of an employed laser diode.However,change in laser modality can occur due to change in operating conditions....Self-mixing interferometry(SMI)is an attractive sensing scheme that typically relies on mono-modal operation of an employed laser diode.However,change in laser modality can occur due to change in operating conditions.So,detection of occurrence of multi-modality in SMI signals is necessary to avoid erroneous metric measurements.Typically,processing of multi-modal SMI signals is a difficult task due to the diverse and complex nature of such signals.However,the proposed techniques can significantly ease this task by identifying the modal state of SMI signals with 100%success rate so that interferometric fringes can be correctly interpreted for metric sensing applications.展开更多
The output intensity variations of the laser used in a prism coupling system are observed and found to be induced by the external optical feedback, which comes from the reflection on the prism. The intensity variation...The output intensity variations of the laser used in a prism coupling system are observed and found to be induced by the external optical feedback, which comes from the reflection on the prism. The intensity variations are explained with laser theory. The trough in the intensity variation corresponds to the position of the prism when the output light beam propagates perpendicularly to the prism. Based on the trough a new method for rotating the prism and reading out the step numbers is proposed, by which the angle 0° in the system need not to be calibrated. It is proven by experiment that the new method would improve the accuracy of the refractive index up to ±0.00001 and thickness to ±1 nm.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60437030).
文摘The optical feedback characteristics in a Zeeman-birefringence dual-frequency laser are studied during the laser cavity tuning in three different kinds of optical feedback conditions: (i) only //-light is fed back; (ii) only ⊥-light is fed back; (iii) both lights are fed back. A compact displacement sensor is designed using the experimental result that there is a nearly 90 degrees phase delay between the two lights' cosine optical feedback signals when both lights are fed back into the laser cavity. The priority order that the two lights' intensity curves appear can be used for direction discrimination. The resolution of the displacement sensor is at least 79 rim, and the sensor can discriminate the target's moving direction easily.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No 60438010).
文摘The output characteristics of optical feedback in a helium neon laser with a birefringent internal cavity are studied systematically in five different regions of the gain curve for the two orthogonally polarized modes. When the laser operates in the two end regions of the laser gain curve, one of the two orthogonally polarized modes will be a leading one in optical feedback. Strong mode competition can be observed. However, when the laser operates in the middle region of the laser gain curve, the two modes can oscillate equally with optical feedback. Besides the intensity of the two polarized lights, the total light intensity is also studied at the same time. M-shaped optical feedback curves are found. Particularly, when the average intensities of the two lights are comparable, the intensity modulation curve of the total light is doubled, which can be used to improve the resolution of an optical feedback system.
文摘Self-mixing interferometry(SMI)is an attractive sensing scheme that typically relies on mono-modal operation of an employed laser diode.However,change in laser modality can occur due to change in operating conditions.So,detection of occurrence of multi-modality in SMI signals is necessary to avoid erroneous metric measurements.Typically,processing of multi-modal SMI signals is a difficult task due to the diverse and complex nature of such signals.However,the proposed techniques can significantly ease this task by identifying the modal state of SMI signals with 100%success rate so that interferometric fringes can be correctly interpreted for metric sensing applications.
文摘The output intensity variations of the laser used in a prism coupling system are observed and found to be induced by the external optical feedback, which comes from the reflection on the prism. The intensity variations are explained with laser theory. The trough in the intensity variation corresponds to the position of the prism when the output light beam propagates perpendicularly to the prism. Based on the trough a new method for rotating the prism and reading out the step numbers is proposed, by which the angle 0° in the system need not to be calibrated. It is proven by experiment that the new method would improve the accuracy of the refractive index up to ±0.00001 and thickness to ±1 nm.