We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on L...We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on Lax pair obtained by us,we derive the infinitely-many conservation laws.We give the bright one-,two-,and N-soliton solutions,and the first-,second-,and Nth-order breather solutions based on the N-fold DT.We conclude that the velocities of the bright solitons are influenced by the distributed gain function,g(z),and variable coefficients in equation,h1(z),p1(z),r1(z),and s1(z)via the asymptotic analysis,where z represents the propagation variable or spatial coordinate.We also graphically observe that:the velocities of the first-and second-order breathers will be affected by h1(z),p1(z),r1(z),and s1(z),and the background wave depends on g(z).展开更多
Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin o...Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics.展开更多
The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal st...The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life.展开更多
The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excel...The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.展开更多
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan...Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.展开更多
Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They ca...Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways.展开更多
Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatm...Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed.展开更多
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical ...The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical fiber are made in detail. The measurement principle, method and experimental research on self diagnose of the rupture place in composite materials by using hollow optical fiber are also put forward. Experiments on composite materials with or without embedded optical fiber are performed according to Chinese test standards in order to find out the comparable characters. Based on the experimental results, it is found that there is only little difference on the mechanical behavior of composite materials with or without embedded hollow optical fibers. In other words, this method can be used in engineering practice, such as in smart structures and other fields. Finally the general scheme of the entire system is given.展开更多
This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by ...This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.展开更多
Novel 2×2 torsion-mirror optical switch arrays are fabricated by using the mixed micromachining based on the surface and bulk silicon microelectronics,then are investigated electromechanically in applied direct a...Novel 2×2 torsion-mirror optical switch arrays are fabricated by using the mixed micromachining based on the surface and bulk silicon microelectronics,then are investigated electromechanically in applied direct and alternating electric fields.When the thickness of the elastic torsion beams suspending the aluminum coated polysilicon micro-mirrors of the switches in the arrays is about 1μm,the electrostatic yielding voltages for driving the mirrors to achieve their ON-state are in the range of 270~290V,and the minimum holding voltages for mirrors ON-state are found as 55V or so.Theoretical analysis manifests that the yielding voltage is more sensitive to beam thickness than other design parameters do about the torsion-mirror switch structures.The lifetime can reach 10 8 times.The estimated shortest switching time of the switches at least lasts for less than 2ms.The force analysis on the two kinds of new fiber self-holding structures integrated monolithically in the chip of the optical switch arrays indicates that the structures can feature self-fixing and self-aligning of optical fibers.展开更多
2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includ...2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includes a 4: 1 multiplexer and a laser diode driver (LDD), has four 622 Mbit/s random signals as its inputs and gets a 2.5 Gbit/s driving signal as its output; the receiver detects a 2.5 Gbit/s random signal and gets four 622 Mbit/s signals at the output. The main circuits include a trans-impedance amplifier (TIA), a limiting amplifier, a clock and data recovery (CDR) unit, and a 1: 4 demultiplexer (DEMUX). Test results prove the logic functions of the transmitter to be right, and the 10% to 90% rise and fall times of transmitter's output data eye diagram are 211.1 ps and 200 ps, respectively. The sensitivity of the receiver is measured to be better than 20 mV. The root mean square jitter of the DEMUX's output data is 15.6 ps and that of the clock after 1: 4 frequency dividing is 1.9 ps. Two chips are both applicable to 2.5 Gbit/s optical fiber communication systems.展开更多
This paper investigated the continuous measurement of a refractive index(RI)sensor based on macrobending microoptical plastic fiber(m-POF).The sensing properties of the RI sensor depend on the structure parameter,whic...This paper investigated the continuous measurement of a refractive index(RI)sensor based on macrobending microoptical plastic fiber(m-POF).The sensing properties of the RI sensor depend on the structure parameter,which is the ratio of macrobending radius of m-POF to the radius of fiber itself.The ratio changes with the measurement time increasing because of the water absorption,which introduces an maximum measurement deviation of 7.3×10^(-5) RIU when the immersion time exceeds 40 h.This work indicates that for the sensors based on POF,the measurement time must be taken into consideration for continuous measurement.展开更多
In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOG...In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOGs), three types of polarization-maintaining (PM) fibers are tested by using a 60Co γ-radiation source. The observed different mean wave- length shift (MWS) behaviors for different fibers are interpreted by color-center theory involving dose rate-dependent absorption bands in ultraviolet and visible ranges and total dose-dependent near-infrared absorption bands. To evaluate the mean wavelength variation in a fiber coil and the induced scale factor change for space-borne IFOGs under low radiation doses in a space environment, the influence of dose rate on the mean wavelength is investigated by testing four germanium (Ge) doped fibers and two germanium-phosphorus (Ge-P) codoped fibers irradiated at different dose rates. Experimental results indicate that the Ge-doped fibers show the least mean wavelength shift during irradiation and their mean wavelength of optical signal transmission in fibers will shift to a shorter wavelength in a low-dose-rate radiation environment. Finally, the change in the scale factor of IFOG resulting from the mean wavelength shift is estimated and tested, and it is found that the significant radiation-induced scale factor variation must be considered during the design of space-borne IFOGs.展开更多
We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-ca...We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro- optic modulator and a piezo-transducer, the repetition rate can be stabilized with a high-bandwidth servo in a frequency range of 3 kHz, enabling long-term repetition rate phase-locking. The in-loop frequency stability of repetition rate is about 1.6× 10-13 in an integration time of 1 s, limited by the measurement system; and it is inversely proportional to integration time in the short term. Furthermore, using a common path f-2f interferometer, the carrier envelope offset frequency of the comb is obtained with a signal-to-noise ratio of 40 dB in a 3-MHz resolution bandwidth. Stabilized cartier envelope offset frequency exhibits a deviation of 0.6 mHz in an integration time of 1 s.展开更多
We demonstrate coherent transfer of an ultra-stable optical frequency at 192.8 THz over 50-km spooled fiber. Random phase noise induced by environmental disturbance through fiber is detected and suppressed by feeding ...We demonstrate coherent transfer of an ultra-stable optical frequency at 192.8 THz over 50-km spooled fiber. Random phase noise induced by environmental disturbance through fiber is detected and suppressed by feeding a correctional signal into an acousto-optic modulator. After being compensated, the fiber-induced frequency instability is 2×10-17 at 1-s averaging time and reaches 8×10-20 after 16 h. The noise floor of the compensation system could be as low as 2×10-18 at 1-s averaging time.展开更多
An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed a...An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator.展开更多
AIM: To analyze the diagnostic capabilities of peripapillary retinal nerve fiber layer(p RNFL) thickness and segmented inner macular layer(IML) thickness measured by spectraldomain optical coherence tomography fo...AIM: To analyze the diagnostic capabilities of peripapillary retinal nerve fiber layer(p RNFL) thickness and segmented inner macular layer(IML) thickness measured by spectraldomain optical coherence tomography for detection of early glaucoma. METHODS: Fifty-three patients with primary open angle glaucoma(POAG), 60 patients with normal tension glaucoma(NTG) and 32 normal control subjects were enrolled. Thicknesses of p RNFL, total macular layers(TML), and the IML, including macular RNFL(m RNFL) and macular ganglion cell layer(m GCL) were assessed. The areas under the receiver operating characteristic curves(AROC) were calculated to compare the diagnostic power of different parameters. RESULTS: There were no differences in the parameters of p RNFL, TML, and IML between POAG and NTG groups. The thicknesses of superior and inferior m GCL showed significant correlation with mean deviation of visual field(R2=0.071, P=0.004; R2=0.08, P=0.002). The m GCL thickness significantly correlated with the p RNFL thickness in the superior and inferior quadrants(R2=0.156, P〈0.001; R2=0.407, P〈0.001). The thickness of the inferior-outer sector of macula had greater AROCs than those in the inferior-inner sector of macula. The AROCs for superior(0.894) and inferior(0.879) p RNFL thicknesses were similar with the AROCs for superior(0.839) and inferior m GCL(0.864) thicknesses. Sensitivities at 80% specificity for global p RNFL, inferior-outer m GCL and inferior-outer m RNFL thicknesses were 0.938, 0.867, and 0.725, respectively. CONCLUSION: The diagnostic capability of the m GCL thickness is comparable to that of the p RNFL thickness in patients with early glaucoma. The inferior-outer sector of IML has a better diagnostic capability than the inferiorinner sector of IML for detection of early glaucoma.展开更多
One optical fiber transmission system is designed. The modularization optical fiber transmission adapters were utilized in the system, so the system structure could be flexibly sealable. The sub-array adapter and sign...One optical fiber transmission system is designed. The modularization optical fiber transmission adapters were utilized in the system, so the system structure could be flexibly sealable. The sub-array adapter and signal processor adapter were designed and realized utilizing the new field programmable gate array (FP- GA) which could drive the optical transceiver. The transmission agreement was designed based on the data stream. In order to solve the signal synchronization problem of the optical fiber transmitted phased array radar, a method named synchronous clock was designed. The fiber transmission error code rate of the system was zero with an experimental transmission velocity of 800 Mbit/s. The phased array radar system has detected the airplane target, thus validated the feasibility of the design method.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金Project supported by the the Fundamental Research Funds for the Central Universities(Grant No.2023MS163).
文摘We study a generalized higher-order nonlinear Schr¨odinger equation in an optical fiber or a planar waveguide.We obtain the Lax pair and N-fold Darboux transformation(DT)with N being a positive integer.Based on Lax pair obtained by us,we derive the infinitely-many conservation laws.We give the bright one-,two-,and N-soliton solutions,and the first-,second-,and Nth-order breather solutions based on the N-fold DT.We conclude that the velocities of the bright solitons are influenced by the distributed gain function,g(z),and variable coefficients in equation,h1(z),p1(z),r1(z),and s1(z)via the asymptotic analysis,where z represents the propagation variable or spatial coordinate.We also graphically observe that:the velocities of the first-and second-order breathers will be affected by h1(z),p1(z),r1(z),and s1(z),and the background wave depends on g(z).
基金in part by the National Natural Science Foundation of China under Grants 62271079,61875239,62127802in part by the Fundamental Research Funds for the Central Universities under Grant 2023PY01+1 种基金in part by the National Key Research and Development Program of China under Grant 2018YFB2200903in part by the Beijing Nova Program with Grant Number Z211100002121138.
文摘Efficient optical network management poses significant importance in backhaul and access network communicationfor preventing service disruptions and ensuring Quality of Service(QoS)satisfaction.The emerging faultsin optical networks introduce challenges that can jeopardize the network with a variety of faults.The existingliterature witnessed various partial or inadequate solutions.On the other hand,Machine Learning(ML)hasrevolutionized as a promising technique for fault detection and prevention.Unlike traditional fault managementsystems,this research has three-fold contributions.First,this research leverages the ML and Deep Learning(DL)multi-classification system and evaluates their accuracy in detecting six distinct fault types,including fiber cut,fibereavesdropping,splicing,bad connector,bending,and PC connector.Secondly,this paper assesses the classificationdelay of each classification algorithm.Finally,this work proposes a fiber optics fault prevention algorithm thatdetermines to mitigate the faults accordingly.This work utilized a publicly available fiber optics dataset namedOTDR_Data and applied different ML classifiers,such as Gaussian Naive Bayes(GNB),Logistic Regression(LR),Support Vector Machine(SVM),K-Nearest Neighbor(KNN),Random Forest(RF),and Decision Tree(DT).Moreover,Ensemble Learning(EL)techniques are applied to evaluate the accuracy of various classifiers.In addition,this work evaluated the performance of DL-based Convolutional Neural Network and Long-Short Term Memory(CNN-LSTM)hybrid classifier.The findings reveal that the CNN-LSTM hybrid technique achieved the highestaccuracy of 99%with a delay of 360 s.On the other hand,EL techniques improved the accuracy in detecting fiberoptic faults.Thus,this research comprehensively assesses accuracy and delay metrics for various classifiers andproposes the most efficient attack detection system in fiber optics.
基金the National Natural Science Foundation of China(No.52307245[Y.D.Li],No.U21A20170[X.He],22279070[L.Wang],and 52206263[Y.Song])the China Postdoctoral Science Foundation(No.2022M721820[Y.D.Li])the Ministry of Science and Technology of China(No.2019YFA0705703[L.Wang])。
文摘The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life.
基金Funded by National Natural Science Foundation of China (Nos.51372179, 51772224)the Open Projects Foundation of Yangtze Optical Fiber and Cable Joint Stock Limited Company (YOFC)(No.SKLD1705)。
文摘The surface-enhanced Raman scattering(SERS) optical fiber probes were successfully prepared by self-assembling on polyelectrolyte multilayers. Gold nanorods(Au NRs) were used as SERS enhancement material to give excellent biological affinity and stability to the SERS optical fiber probes. Au NRs were synthesized by seed growth method. The synergistic effect between AgNO_(3) and surfactant was investigated, and the highest yield was found when AgNO_(3) was 500 uL. Meanwhile, different SERS optical fiber probes were obtained by selecting silane coupling agent, polyelectrolyte multilayer and graphene oxide(GO) to treat quartz fiber. It was found that the SERS optical fiber probes obtained by the self-assembled on polyelectrolyte multilayers method performed better than those by other methods. In addition, Mapping was combined with finite element simulation to analyze the electromagnetic field distribution at the fiber end face.The electromagnetic field distribution of Au NRs was investigated, the difference of electromagnetic field intensity around the Au NRs with different arrangements was compared, the strongest signal was obtained when the Au NRs were head-to-head. Finally, sensitivity of the optimized SERS optical fiber probes could reach 10^(-9)mol/L, with excellent stability and repeatability.
基金supported by the National Natural Science Foundation of China(No.12072056)the National Key Research and Development Program of China(No.2018YFA0702800)+1 种基金the Jiangsu-Czech Bilateral Co-Funding R&D Project(No.BZ2023011)the Fundamental Research Funds for the Central Universities(No.B220204002).
文摘Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures.
基金supported by the National Natural Science Foundation of China(U23A20336).
文摘Aerospace optical cables and fiber-optic connectors have numerous advantages(e.g.,low loss,wide transmission frequency band,large capacity,light weight,and excellent resistance to electromagnetic interference).They can achieve optical communication interconnections and high-speed bidirectional data transmission between optical terminals and photodetectors in space,ensuring the stability and reliability of data transmission during spacecraft operations in orbit.They have become essential components in high-speed networking and optically interconnected communications for spacecrafts.Thermal stress simulation analysis is important for evaluating the temperature stress concentration phenomenon resulting from temperature fluctuations,temperature gradients,and other factors in aerospace optical cables and connectors under the combined effects of extreme temperatures and vacuum environments.Considering this,advanced optical communication technology has been widely used in high-speed railway communication networks to transmit safe,stable and reliable signals,as high-speed railway optical communication in special areas with extreme climates,such as cold and high-temperature regions,requires high-reliability optical cables and connectors.Therefore,based on the finite element method,comprehensive comparisons were made between the thermal distributions of aerospace optical cables and J599III fiber optic connectors under different conditions,providing a theoretical basis for evaluating the performance of aerospace optical cables and connectors in space environments and meanwhile building a technical foundation for potential optical communication applications in the field of high-speed railways.
基金supported by National Natural Science Foundation of China(62135007 and 61925502).
文摘Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed.
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.
文摘The method for self diagnose and self repair of composite materials using hollow optical fiber with injected adhesive is first put forward. The investigation and analysis of pass light mechanism of hollow optical fiber are made in detail. The measurement principle, method and experimental research on self diagnose of the rupture place in composite materials by using hollow optical fiber are also put forward. Experiments on composite materials with or without embedded optical fiber are performed according to Chinese test standards in order to find out the comparable characters. Based on the experimental results, it is found that there is only little difference on the mechanical behavior of composite materials with or without embedded hollow optical fibers. In other words, this method can be used in engineering practice, such as in smart structures and other fields. Finally the general scheme of the entire system is given.
文摘This paper presents an optical sensor technique used in the damage evaluation which is formed by structurally integrated fiber optic reticulate sensors embedded in the composite materials. The fibers are processed by chemical method and their outsides are peeled to form particles of irregular distribution and they differ in size, so the slight disturbance range of stochastic wall are formed in fibers. According to the characteristics of power loss of waveguide mode caused by slight disturbance of stochastic wall and radiative mode transmission, the range of slight disturbance of stochastic wall may be served as the sensitive range of the sensor. On the basis of theory of slight disturbance of stochastic wall of planar optical waveguide, the relation between the corrosion time and the opposite power loss by experiments is investigated. In this paper, the measurement results of object of SIFORS are also presented. The results show that the optical sensor technique may be used in the damage evaluation of an aircraft.
文摘Novel 2×2 torsion-mirror optical switch arrays are fabricated by using the mixed micromachining based on the surface and bulk silicon microelectronics,then are investigated electromechanically in applied direct and alternating electric fields.When the thickness of the elastic torsion beams suspending the aluminum coated polysilicon micro-mirrors of the switches in the arrays is about 1μm,the electrostatic yielding voltages for driving the mirrors to achieve their ON-state are in the range of 270~290V,and the minimum holding voltages for mirrors ON-state are found as 55V or so.Theoretical analysis manifests that the yielding voltage is more sensitive to beam thickness than other design parameters do about the torsion-mirror switch structures.The lifetime can reach 10 8 times.The estimated shortest switching time of the switches at least lasts for less than 2ms.The force analysis on the two kinds of new fiber self-holding structures integrated monolithically in the chip of the optical switch arrays indicates that the structures can feature self-fixing and self-aligning of optical fibers.
基金The National High Technology Research and Develop-ment Program of China (863 Program) (No.2001AA312010).
文摘2.5 Gbit/s monolithic integrated circuits (ICs) for optical fiber transmitter and receiver in 0.35 μm CMOS (complementary metal-oxide-semiconductor transistor) process are presented. The transmitter, which includes a 4: 1 multiplexer and a laser diode driver (LDD), has four 622 Mbit/s random signals as its inputs and gets a 2.5 Gbit/s driving signal as its output; the receiver detects a 2.5 Gbit/s random signal and gets four 622 Mbit/s signals at the output. The main circuits include a trans-impedance amplifier (TIA), a limiting amplifier, a clock and data recovery (CDR) unit, and a 1: 4 demultiplexer (DEMUX). Test results prove the logic functions of the transmitter to be right, and the 10% to 90% rise and fall times of transmitter's output data eye diagram are 211.1 ps and 200 ps, respectively. The sensitivity of the receiver is measured to be better than 20 mV. The root mean square jitter of the DEMUX's output data is 15.6 ps and that of the clock after 1: 4 frequency dividing is 1.9 ps. Two chips are both applicable to 2.5 Gbit/s optical fiber communication systems.
基金National Natural Science Foundation of China(No.61405127)Key Program for International S&T Cooperation Projects of China(No.2013DFR10150)
文摘This paper investigated the continuous measurement of a refractive index(RI)sensor based on macrobending microoptical plastic fiber(m-POF).The sensing properties of the RI sensor depend on the structure parameter,which is the ratio of macrobending radius of m-POF to the radius of fiber itself.The ratio changes with the measurement time increasing because of the water absorption,which introduces an maximum measurement deviation of 7.3×10^(-5) RIU when the immersion time exceeds 40 h.This work indicates that for the sensors based on POF,the measurement time must be taken into consideration for continuous measurement.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61007040)
文摘In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean trans- mission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOGs), three types of polarization-maintaining (PM) fibers are tested by using a 60Co γ-radiation source. The observed different mean wave- length shift (MWS) behaviors for different fibers are interpreted by color-center theory involving dose rate-dependent absorption bands in ultraviolet and visible ranges and total dose-dependent near-infrared absorption bands. To evaluate the mean wavelength variation in a fiber coil and the induced scale factor change for space-borne IFOGs under low radiation doses in a space environment, the influence of dose rate on the mean wavelength is investigated by testing four germanium (Ge) doped fibers and two germanium-phosphorus (Ge-P) codoped fibers irradiated at different dose rates. Experimental results indicate that the Ge-doped fibers show the least mean wavelength shift during irradiation and their mean wavelength of optical signal transmission in fibers will shift to a shorter wavelength in a low-dose-rate radiation environment. Finally, the change in the scale factor of IFOG resulting from the mean wavelength shift is estimated and tested, and it is found that the significant radiation-induced scale factor variation must be considered during the design of space-borne IFOGs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91336101 and 61127901)West Light Foundation of the Chinese Academy of Sciences(Grant No.2013ZD02)
文摘We demonstrate an optical frequency comb based on an erbium-doped-fiber femtosecond laser with the nonlinear polarization evolution scheme. The repetition rate of the laser is about 209 MHz. By controlling an intra-cavity electro- optic modulator and a piezo-transducer, the repetition rate can be stabilized with a high-bandwidth servo in a frequency range of 3 kHz, enabling long-term repetition rate phase-locking. The in-loop frequency stability of repetition rate is about 1.6× 10-13 in an integration time of 1 s, limited by the measurement system; and it is inversely proportional to integration time in the short term. Furthermore, using a common path f-2f interferometer, the carrier envelope offset frequency of the comb is obtained with a signal-to-noise ratio of 40 dB in a 3-MHz resolution bandwidth. Stabilized cartier envelope offset frequency exhibits a deviation of 0.6 mHz in an integration time of 1 s.
基金supported by the National Natural Science Foundation of China(Grant Nos.11127405,11334002,and 11374102)the National Basic Research Program of China(Grant No.2012CB821302)
文摘We demonstrate coherent transfer of an ultra-stable optical frequency at 192.8 THz over 50-km spooled fiber. Random phase noise induced by environmental disturbance through fiber is detected and suppressed by feeding a correctional signal into an acousto-optic modulator. After being compensated, the fiber-induced frequency instability is 2×10-17 at 1-s averaging time and reaches 8×10-20 after 16 h. The noise floor of the compensation system could be as low as 2×10-18 at 1-s averaging time.
基金Project supported by the Natural Science Foundation of Tianjin City,China(Grant No.13JCYBJC16100)the National Natural Science Foundation of China(Grant No.61107035)+1 种基金the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2013YQ03091502)the National Basic Research Program of China(Grant Nos.2010CB327802 and 2010CB327806)
文摘An all-fiber optical modulator, which is composed of a piece of no-core fiber spliced between two sections of singlemode fibers and uses magnetic fluid(MF) as the cladding of the no-core fiber section, is proposed and investigated experimentally. Due to the tunable refractive index and absorption coefficient of MF, the output intensity can be modulated by controlling an applied magnetic field. The dependences of the modulator's temporal response on the working wavelength,the magnetic field strength(H), and the MF's concentration are investigated experimentally. The results are explained qualitatively by the dynamic response process of MF under the action of a magnetic field. The findings are helpful for optimizing this kind of modulator.
基金Supported by grants CMRPG8E1251 from Chang Gung Memorial Hospital,Taiwan
文摘AIM: To analyze the diagnostic capabilities of peripapillary retinal nerve fiber layer(p RNFL) thickness and segmented inner macular layer(IML) thickness measured by spectraldomain optical coherence tomography for detection of early glaucoma. METHODS: Fifty-three patients with primary open angle glaucoma(POAG), 60 patients with normal tension glaucoma(NTG) and 32 normal control subjects were enrolled. Thicknesses of p RNFL, total macular layers(TML), and the IML, including macular RNFL(m RNFL) and macular ganglion cell layer(m GCL) were assessed. The areas under the receiver operating characteristic curves(AROC) were calculated to compare the diagnostic power of different parameters. RESULTS: There were no differences in the parameters of p RNFL, TML, and IML between POAG and NTG groups. The thicknesses of superior and inferior m GCL showed significant correlation with mean deviation of visual field(R2=0.071, P=0.004; R2=0.08, P=0.002). The m GCL thickness significantly correlated with the p RNFL thickness in the superior and inferior quadrants(R2=0.156, P〈0.001; R2=0.407, P〈0.001). The thickness of the inferior-outer sector of macula had greater AROCs than those in the inferior-inner sector of macula. The AROCs for superior(0.894) and inferior(0.879) p RNFL thicknesses were similar with the AROCs for superior(0.839) and inferior m GCL(0.864) thicknesses. Sensitivities at 80% specificity for global p RNFL, inferior-outer m GCL and inferior-outer m RNFL thicknesses were 0.938, 0.867, and 0.725, respectively. CONCLUSION: The diagnostic capability of the m GCL thickness is comparable to that of the p RNFL thickness in patients with early glaucoma. The inferior-outer sector of IML has a better diagnostic capability than the inferiorinner sector of IML for detection of early glaucoma.
基金the Ministerial Level Advanced Research Foundation(30507060)
文摘One optical fiber transmission system is designed. The modularization optical fiber transmission adapters were utilized in the system, so the system structure could be flexibly sealable. The sub-array adapter and signal processor adapter were designed and realized utilizing the new field programmable gate array (FP- GA) which could drive the optical transceiver. The transmission agreement was designed based on the data stream. In order to solve the signal synchronization problem of the optical fiber transmitted phased array radar, a method named synchronous clock was designed. The fiber transmission error code rate of the system was zero with an experimental transmission velocity of 800 Mbit/s. The phased array radar system has detected the airplane target, thus validated the feasibility of the design method.