The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics...The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.展开更多
Due to triangular photonic crystal fiber (PCF) high nonlinearity and low dispersion slope, using the condition that the different linear phase shift combination must satisfy the phase match, the expressions of gain ...Due to triangular photonic crystal fiber (PCF) high nonlinearity and low dispersion slope, using the condition that the different linear phase shift combination must satisfy the phase match, the expressions of gain and bandwidth for one-pump fiber-optic parametric amplifiers (1P-FOPA) based on PCF in the normal and abnormal dispersion regimes are derived respectively. Then, 1P-FOPAs performance comparison among PCF, dispersion-shifted fiber (DSF) and highly nonlinear fibers (HNLF) are carried out by numerical simulations. It is shown that the 1P-FOPA based on triangular PCF can provide higher peak gain over wider bandwidth. When the pump wavelength is at the zero-dispersion wavelength (ZDWL), about 108.7 nm single-pass gain bandwidth and 91.4 dB peak gain can be obtained; when in the normal dispersion regime and near zero-dispersion wavelength, not less than 46 nm single-pass gain bandwidth 77.1 nm away from pump can be achieved. Finally the influence of dispersion fluctuation is analyzed, and the result shows that the tolerance of the 1P-FOPA based on photonic crystal fiber is better.展开更多
文摘The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.
文摘Due to triangular photonic crystal fiber (PCF) high nonlinearity and low dispersion slope, using the condition that the different linear phase shift combination must satisfy the phase match, the expressions of gain and bandwidth for one-pump fiber-optic parametric amplifiers (1P-FOPA) based on PCF in the normal and abnormal dispersion regimes are derived respectively. Then, 1P-FOPAs performance comparison among PCF, dispersion-shifted fiber (DSF) and highly nonlinear fibers (HNLF) are carried out by numerical simulations. It is shown that the 1P-FOPA based on triangular PCF can provide higher peak gain over wider bandwidth. When the pump wavelength is at the zero-dispersion wavelength (ZDWL), about 108.7 nm single-pass gain bandwidth and 91.4 dB peak gain can be obtained; when in the normal dispersion regime and near zero-dispersion wavelength, not less than 46 nm single-pass gain bandwidth 77.1 nm away from pump can be achieved. Finally the influence of dispersion fluctuation is analyzed, and the result shows that the tolerance of the 1P-FOPA based on photonic crystal fiber is better.