Cavity-coupled plasmonic structure is demonstrated to be a simple and effective tool to manipulatelight,enhance the biosensing figure of merit, and control the polarization state. In this Letter, we demonstrate the tu...Cavity-coupled plasmonic structure is demonstrated to be a simple and effective tool to manipulatelight,enhance the biosensing figure of merit, and control the polarization state. In this Letter, we demonstrate the tunability of the chiroptical effect of cavity-coupled chiral structure, i.e., sandwich chiral metamaterials(SCMs), in whichradiation coupling dominates the interaction between particles. Two types of SCMs whose building blocks are 3D chiral and 2D chiral, respectively, are numerically studied. Distinct responses are observed in these two materials. The chiroptical effect can be effectively manipulated and enhanced in the 2D case, while the SCMs consisting of 3D chiral layers keep the chiroptical effecta constant. A theoretical analysis based on matrix optics is developed to explain the corresponding phenomena, which gives a reasonable agreement with numerical simulations.展开更多
During the past decades,nonlinear optical(NLO)materials have attracted special interest because of their potential applications in photonic devices,such as optical switching,frequency conversion and electro-optic mo...During the past decades,nonlinear optical(NLO)materials have attracted special interest because of their potential applications in photonic devices,such as optical switching,frequency conversion and electro-optic modulators.Among the finding ways to obtain excellent NLO materials with both large NLO response and short response time,展开更多
基金supported by the National Natural Science Foundation of China under Grant No.61377054
文摘Cavity-coupled plasmonic structure is demonstrated to be a simple and effective tool to manipulatelight,enhance the biosensing figure of merit, and control the polarization state. In this Letter, we demonstrate the tunability of the chiroptical effect of cavity-coupled chiral structure, i.e., sandwich chiral metamaterials(SCMs), in whichradiation coupling dominates the interaction between particles. Two types of SCMs whose building blocks are 3D chiral and 2D chiral, respectively, are numerically studied. Distinct responses are observed in these two materials. The chiroptical effect can be effectively manipulated and enhanced in the 2D case, while the SCMs consisting of 3D chiral layers keep the chiroptical effecta constant. A theoretical analysis based on matrix optics is developed to explain the corresponding phenomena, which gives a reasonable agreement with numerical simulations.
基金supported by the National Natural Science Foundation of China(Grant No.11474046)Program for New Century Excellent Talents in University(Grant No.NCET-13-0702)+3 种基金Fundamental Research Funds for the Central Universities(Grant Nos.DC201502080202,and DC201502080203)Program for Liaoning Excellent Talents in University(LNET)(Grant No.LR2015016)Science and Technique Foundation of Dalian(Grant Nos.2014J11JH134,and 2015J12JH201)Education Department of Liaoning Province of China.
文摘During the past decades,nonlinear optical(NLO)materials have attracted special interest because of their potential applications in photonic devices,such as optical switching,frequency conversion and electro-optic modulators.Among the finding ways to obtain excellent NLO materials with both large NLO response and short response time,