期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deepfake Video Detection Based on Improved CapsNet and Temporal–Spatial Features
1
作者 Tianliang Lu Yuxuan Bao Lanting Li 《Computers, Materials & Continua》 SCIE EI 2023年第4期715-740,共26页
Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms,presenting risks for numerous countries,societies,and individuals,and posing a serious threat to cyberspa... Rapid development of deepfake technology led to the spread of forged audios and videos across network platforms,presenting risks for numerous countries,societies,and individuals,and posing a serious threat to cyberspace security.To address the problem of insufficient extraction of spatial features and the fact that temporal features are not considered in the deepfake video detection,we propose a detection method based on improved CapsNet and temporal–spatial features(iCapsNet–TSF).First,the dynamic routing algorithm of CapsNet is improved using weight initialization and updating.Then,the optical flow algorithm is used to extract interframe temporal features of the videos to form a dataset of temporal–spatial features.Finally,the iCapsNet model is employed to fully learn the temporal–spatial features of facial videos,and the results are fused.Experimental results show that the detection accuracy of iCapsNet–TSF reaches 94.07%,98.83%,and 98.50%on the Celeb-DF,FaceSwap,and Deepfakes datasets,respectively,displaying a better performance than most existing mainstream algorithms.The iCapsNet–TSF method combines the capsule network and the optical flow algorithm,providing a novel strategy for the deepfake detection,which is of great significance to the prevention of deepfake attacks and the preservation of cyberspace security. 展开更多
关键词 Deepfake detection CapsNet optical flow algorithm temporal–spatial features
下载PDF
Tracking and recognition algorithm for a robot harvesting oscillating apples 被引量:2
2
作者 Qinghua Yang Chen Chen +2 位作者 Jiayu Dai Yi Xun Guanjun Bao 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第5期163-170,共8页
Apple fruits on trees tend to swing because of wind or other natural causes,therefore reducing the accuracy of apple picking by robots.To increase the accuracy and to speed up the apple tracking and identifying proces... Apple fruits on trees tend to swing because of wind or other natural causes,therefore reducing the accuracy of apple picking by robots.To increase the accuracy and to speed up the apple tracking and identifying process,tracking and recognition method combined with an affine transformation was proposed.The method can be divided into three steps.First,the initial image was segmented by Otsu’s thresholding method based on the two times Red minus Green minus Blue(2R-G-B)color feature;after improving the binary image,the apples were recognized with a local parameter adaptive Hough circle transformation method,thus improving the accuracy of recognition and avoiding the long,time-consuming process and excessive fitted circles in traditional Hough circle transformation.The process and results were verified experimentally.Second,the Shi-Tomasi corners detected and extracted from the first frame image were tracked,and the corners with large positive and negative optical flow errors were removed.The affine transformation matrix between the two frames was calculated based on the Random Sampling Consistency algorithm(RANSAC)to correct the scale of the template image and predict the apple positions.Third,the best positions of the target apples within 1.2 times of the prediction area were searched with a de-mean normalized cross-correlation template matching algorithm.The test results showed that the running time of each frame was 25 ms and 130 ms and the tracking error was more than 8%and 20%in the absence of template correction and apple position prediction,respectively.In comparison,the running time of our algorithm was 25 ms,and the tracking error was less than 4%.Therefore,test results indicate that speed and efficiency can be greatly improved by using our method,and this strategy can also provide a reference for tracking and recognizing other oscillatory fruits. 展开更多
关键词 apple picking robot tracking and recognition algorithm oscillating apple Hough transform pyramid LK optical flow algorithm affine transform template matching
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部