In the process of human behavior recognition, the traditional dense optical flow method has too many pixels and too much overhead, which limits the running speed. This paper proposed a method combing YOLOv3 (You Only ...In the process of human behavior recognition, the traditional dense optical flow method has too many pixels and too much overhead, which limits the running speed. This paper proposed a method combing YOLOv3 (You Only Look Once v3) and local optical flow method. Based on the dense optical flow method, the optical flow modulus of the area where the human target is detected is calculated to reduce the amount of computation and save the cost in terms of time. And then, a threshold value is set to complete the human behavior identification. Through design algorithm, experimental verification and other steps, the walking, running and falling state of human body in real life indoor sports video was identified. Experimental results show that this algorithm is more advantageous for jogging behavior recognition.展开更多
Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a...Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.展开更多
Sea ice velocity impacts the distribution of sea ice,and the flux of exported sea ice through the Fram Strait increases with increasing ice velocity.Therefore,improving the accuracy of estimates of the sea ice velocit...Sea ice velocity impacts the distribution of sea ice,and the flux of exported sea ice through the Fram Strait increases with increasing ice velocity.Therefore,improving the accuracy of estimates of the sea ice velocity is important.We introduce a pyramid algorithm into the Horn-Schunck optical flow(HS-OF)method(to develop the PHS-OF method).Before calculating the sea ice velocity,we generate multilayer pyramid images from an original brightness temperature image.Then,the sea ice velocity of the pyramid layer is calculated,and the ice velocity in the original image is calculated by layer iteration.Winter Arctic sea ice velocities from 2014 to 2016 are obtained and used to discuss the accuracy of the HS-OF method and PHS-OF(specifically the 2-layer PHS-OF(2 LPHS-OF)and 4-layer PHS-OF(4 LPHS-OF))methods.The results prove that the PHS-OF method indeed improves the accuracy of sea ice velocity estimates,and the 2 LPHS-OF scheme is more appropriate for estimating ice velocity.The error is smaller for the 2 LPHS-OF velocity estimates than values from the Ocean and Sea Ice Satellite Application Facility and the Copernicus Marine Environment Monitoring Service,and estimates of changes in velocity by the 2 LPHS-OF method are consistent with those from the National Snow and Ice Data Center.Sea ice undergoes two main motion patterns,i.e.,transpolar drift and the Beaufort Gyre.In addition,cyclonic and anticyclonic ice drift occurred during winter 2016.Variations in sea ice velocity are related to the open water area,sea ice retreat time and length of the open water season.展开更多
The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field...The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field, the paper presents a flow field calculation method based on the optical flow algorithm. The motion of the point was calculated using the change in pixel intensity within two temporally adjacent frame images. The results show the high accuracy and resolution of the flow field at small displacement conditions.展开更多
A modification of Horn and Schunk's approach is investigated, which leads to a better preservation of flow discontinuities. It improves Horn-Schunk model in three aspects: (1) It replaces the smooth weight coeffic...A modification of Horn and Schunk's approach is investigated, which leads to a better preservation of flow discontinuities. It improves Horn-Schunk model in three aspects: (1) It replaces the smooth weight coefficient in the energy equation by the variable weight coefficient. (2) It adopts a novel method to compute the mean velocity. The novel method also reflects the effect of the intensity difference on the image velocity diffusion. (3) It introduces a more efficient iterative method than the Gauss-Seidel method to solve the associated Euler-Lagrange equation. The experiment results validate the better effect of the improved method on preserving discontinuities.展开更多
The optical flow analysis of the image sequence based on the formal lattice Boltzmann equation, with different DdQm models, is discussed in this paper. The Mgorithm is based on the lattice Boltzmann method (LBM), wh...The optical flow analysis of the image sequence based on the formal lattice Boltzmann equation, with different DdQm models, is discussed in this paper. The Mgorithm is based on the lattice Boltzmann method (LBM), which is used in computational fluid dynamics theory for the simulation of fluid dynamics. At first, a generalized approximation to the formal lattice Boltzmann equation is discussed. Then the effects of different DdQm models on the results of the optical flow estimation are compared with each other, while calculating the movement vectors of pixels in the image sequence. The experimental results show that the higher dimension DdQm models, e.g., D3Q15 are more effective than those lower dimension ones.展开更多
A rain-type adaptive pyramid Kanade-Lucas-Tomasi(A-PKLT)optical flow method for radar echo extrapolation is proposed.This method introduces a rain-type classification algorithm that can classify radar echoes into six ...A rain-type adaptive pyramid Kanade-Lucas-Tomasi(A-PKLT)optical flow method for radar echo extrapolation is proposed.This method introduces a rain-type classification algorithm that can classify radar echoes into six types:convective,stratiform,surrounding convective,isolated convective core,isolated convective fringe,and weak echoes.Then,new schemes are designed to optimize specific parameters of the PKLT optical flow based on the rain type of the echo.At the same time,the gradients of radar reflectivity in the fringe positions corresponding to all types of rain echoes are increased.As a result,corner points that are characteristic points used for PKLT optical flow tracking in the surrounding area will be increased.Therefore,more motion vectors are purposefully obtained in the whole radar echo area.This helps to describe the motion characteristics of the precipitation more precisely.Then,the motion vectors corresponding to each type of rain echo are merged,and a denser motion vector field is generated by an interpolation algorithm on the basis of merged motion vectors.Finally,the dense motion vectors are used to extrapolate rain echoes into 0-60-min nowcasts by a semi-Lagrangian scheme.Compared with other nowcasting methods for four landfalling typhoons in or near Shanghai,the new optical flow method is found to be more accurate than the traditional cross-correlation and optical flow methods,particularly showing a clear improvement in the nowcasting of convective echoes on the spiral rainbands of typhoons.展开更多
The injection characteristics of the main fuel nozzle,which is widely applied in advanced lean-premixed-prevaporized(LPP)low-emission combustors,can be simplified as the atomization and vaporization processes of a jet...The injection characteristics of the main fuel nozzle,which is widely applied in advanced lean-premixed-prevaporized(LPP)low-emission combustors,can be simplified as the atomization and vaporization processes of a jet into cross-flow.In this study,a nozzle with a diameter of 0.4 mm is designed and processed through the heating of the inlet air,and the vaporization characteristics are investigated.The optical measurement and cyclone separation methods are separately used to investigate the evaporation rate of a jet into cross-flow.Experimental results show that the fuel evaporation rate in cross-flow is mainly affected by the Weber number(We),equivalent ratio(φ),momentum rate of fuel to air(q),and air temperature.In addition,the inlet temperature is a crucial factor for the evaporation ratio of a jet into cross-flow.The evaporation results measured by two different methods in the same cross-flow are very close to each other with a deviation within 10%.展开更多
目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法...目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法。方法首先,以YOLOv5s为基础,将原有的CSPDarknet主干网络替换成轻量级的MobileNetV3网络,可以减少参数、加快运行速度,同时与ORB-SLAM2系统相结合,在提取ORB特征点的同时获取语义信息,并剔除先验的动态特征点。然后,结合光流法和对极几何约束对可能残存的动态特征点进一步剔除。最后,仅用静态特征点对相机位姿进行估计。结果在TUM数据集上的实验结果表明,与ORB-SLAM2相比,在高动态序列下的ATE和RPE都减少了90%以上,与DS-SLAM、Dyna-SLAM同类型系统相比,在保证定位精度和鲁棒性的同时,跟踪线程中处理一帧图像平均只需28.26 ms。结论该算法能够有效降低动态物体对实时SLAM过程造成的干扰,为实现更加智能化、自动化的包装流程提供了可能。展开更多
文摘In the process of human behavior recognition, the traditional dense optical flow method has too many pixels and too much overhead, which limits the running speed. This paper proposed a method combing YOLOv3 (You Only Look Once v3) and local optical flow method. Based on the dense optical flow method, the optical flow modulus of the area where the human target is detected is calculated to reduce the amount of computation and save the cost in terms of time. And then, a threshold value is set to complete the human behavior identification. Through design algorithm, experimental verification and other steps, the walking, running and falling state of human body in real life indoor sports video was identified. Experimental results show that this algorithm is more advantageous for jogging behavior recognition.
基金the National Natural Science Foundation of China(Grant Nos.51874264 and 52076200)。
文摘Rainbow particle image velocimetry(PIV)can restore the three-dimensional velocity field of particles with a single camera;however,it requires a relatively long time to complete the reconstruction.This paper proposes a hybrid algorithm that combines the fast Fourier transform(FFT)based co-correlation algorithm and the Horn–Schunck(HS)optical flow pyramid iterative algorithm to increase the reconstruction speed.The Rankine vortex simulation experiment was performed,in which the particle velocity field was reconstructed using the proposed algorithm and the rainbow PIV method.The average endpoint error and average angular error of the proposed algorithm were roughly the same as those of the rainbow PIV algorithm;nevertheless,the reconstruction time was 20%shorter.Furthermore,the effect of velocity magnitude and particle density on the reconstruction results was analyzed.In the end,the performance of the proposed algorithm was verified using real experimental single-vortex and double-vortex datasets,from which a similar particle velocity field was obtained compared with the rainbow PIV algorithm.The results show that the reconstruction speed of the proposed hybrid algorithm is approximately 25%faster than that of the rainbow PIV algorithm.
基金The National Key Research and Development Program of China under contract Nos 2018YFC1407200 and 2018YFC1407203the National Natural Science Foundation of China under contract No.41976212
文摘Sea ice velocity impacts the distribution of sea ice,and the flux of exported sea ice through the Fram Strait increases with increasing ice velocity.Therefore,improving the accuracy of estimates of the sea ice velocity is important.We introduce a pyramid algorithm into the Horn-Schunck optical flow(HS-OF)method(to develop the PHS-OF method).Before calculating the sea ice velocity,we generate multilayer pyramid images from an original brightness temperature image.Then,the sea ice velocity of the pyramid layer is calculated,and the ice velocity in the original image is calculated by layer iteration.Winter Arctic sea ice velocities from 2014 to 2016 are obtained and used to discuss the accuracy of the HS-OF method and PHS-OF(specifically the 2-layer PHS-OF(2 LPHS-OF)and 4-layer PHS-OF(4 LPHS-OF))methods.The results prove that the PHS-OF method indeed improves the accuracy of sea ice velocity estimates,and the 2 LPHS-OF scheme is more appropriate for estimating ice velocity.The error is smaller for the 2 LPHS-OF velocity estimates than values from the Ocean and Sea Ice Satellite Application Facility and the Copernicus Marine Environment Monitoring Service,and estimates of changes in velocity by the 2 LPHS-OF method are consistent with those from the National Snow and Ice Data Center.Sea ice undergoes two main motion patterns,i.e.,transpolar drift and the Beaufort Gyre.In addition,cyclonic and anticyclonic ice drift occurred during winter 2016.Variations in sea ice velocity are related to the open water area,sea ice retreat time and length of the open water season.
文摘The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field, the paper presents a flow field calculation method based on the optical flow algorithm. The motion of the point was calculated using the change in pixel intensity within two temporally adjacent frame images. The results show the high accuracy and resolution of the flow field at small displacement conditions.
文摘A modification of Horn and Schunk's approach is investigated, which leads to a better preservation of flow discontinuities. It improves Horn-Schunk model in three aspects: (1) It replaces the smooth weight coefficient in the energy equation by the variable weight coefficient. (2) It adopts a novel method to compute the mean velocity. The novel method also reflects the effect of the intensity difference on the image velocity diffusion. (3) It introduces a more efficient iterative method than the Gauss-Seidel method to solve the associated Euler-Lagrange equation. The experiment results validate the better effect of the improved method on preserving discontinuities.
基金Project supported by the National Natural Science Foundation of China(Grant No.40976108)the Shanghai Leading Academic Discipline Project(Grant No.J50103)the Innovation Program of Municipal Education Commission of Shanghai Municipality(Grant No.11YZ03)
文摘The optical flow analysis of the image sequence based on the formal lattice Boltzmann equation, with different DdQm models, is discussed in this paper. The Mgorithm is based on the lattice Boltzmann method (LBM), which is used in computational fluid dynamics theory for the simulation of fluid dynamics. At first, a generalized approximation to the formal lattice Boltzmann equation is discussed. Then the effects of different DdQm models on the results of the optical flow estimation are compared with each other, while calculating the movement vectors of pixels in the image sequence. The experimental results show that the higher dimension DdQm models, e.g., D3Q15 are more effective than those lower dimension ones.
基金This work was supported by National Key Research and Development Program of China(No.2018YFC1507601)National Natural Science Foundation of China(Grant No.41775049)Scientific Research Project of Shanghai Science and Technology Commission(No.18DZ12000403),and Severe Convection S&T Innovation Team of Shanghai Meteorological Service.
文摘A rain-type adaptive pyramid Kanade-Lucas-Tomasi(A-PKLT)optical flow method for radar echo extrapolation is proposed.This method introduces a rain-type classification algorithm that can classify radar echoes into six types:convective,stratiform,surrounding convective,isolated convective core,isolated convective fringe,and weak echoes.Then,new schemes are designed to optimize specific parameters of the PKLT optical flow based on the rain type of the echo.At the same time,the gradients of radar reflectivity in the fringe positions corresponding to all types of rain echoes are increased.As a result,corner points that are characteristic points used for PKLT optical flow tracking in the surrounding area will be increased.Therefore,more motion vectors are purposefully obtained in the whole radar echo area.This helps to describe the motion characteristics of the precipitation more precisely.Then,the motion vectors corresponding to each type of rain echo are merged,and a denser motion vector field is generated by an interpolation algorithm on the basis of merged motion vectors.Finally,the dense motion vectors are used to extrapolate rain echoes into 0-60-min nowcasts by a semi-Lagrangian scheme.Compared with other nowcasting methods for four landfalling typhoons in or near Shanghai,the new optical flow method is found to be more accurate than the traditional cross-correlation and optical flow methods,particularly showing a clear improvement in the nowcasting of convective echoes on the spiral rainbands of typhoons.
基金supported by the National Natural Science Foundation of China (Nos.51676097, 91741118)
文摘The injection characteristics of the main fuel nozzle,which is widely applied in advanced lean-premixed-prevaporized(LPP)low-emission combustors,can be simplified as the atomization and vaporization processes of a jet into cross-flow.In this study,a nozzle with a diameter of 0.4 mm is designed and processed through the heating of the inlet air,and the vaporization characteristics are investigated.The optical measurement and cyclone separation methods are separately used to investigate the evaporation rate of a jet into cross-flow.Experimental results show that the fuel evaporation rate in cross-flow is mainly affected by the Weber number(We),equivalent ratio(φ),momentum rate of fuel to air(q),and air temperature.In addition,the inlet temperature is a crucial factor for the evaporation ratio of a jet into cross-flow.The evaporation results measured by two different methods in the same cross-flow are very close to each other with a deviation within 10%.
文摘目的移动智能体在执行同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的复杂任务时,动态物体的干扰会导致特征点间的关联减弱,系统定位精度下降,为此提出一种面向室内动态场景下基于YOLOv5和几何约束的视觉SLAM算法。方法首先,以YOLOv5s为基础,将原有的CSPDarknet主干网络替换成轻量级的MobileNetV3网络,可以减少参数、加快运行速度,同时与ORB-SLAM2系统相结合,在提取ORB特征点的同时获取语义信息,并剔除先验的动态特征点。然后,结合光流法和对极几何约束对可能残存的动态特征点进一步剔除。最后,仅用静态特征点对相机位姿进行估计。结果在TUM数据集上的实验结果表明,与ORB-SLAM2相比,在高动态序列下的ATE和RPE都减少了90%以上,与DS-SLAM、Dyna-SLAM同类型系统相比,在保证定位精度和鲁棒性的同时,跟踪线程中处理一帧图像平均只需28.26 ms。结论该算法能够有效降低动态物体对实时SLAM过程造成的干扰,为实现更加智能化、自动化的包装流程提供了可能。