Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently.Therefore,any optical frequency in visible to near-infrared region can be directly traced to a microwave fr...Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently.Therefore,any optical frequency in visible to near-infrared region can be directly traced to a microwave frequency.As a result,the length unit“meter”is directly related to the time unit“second”.This paper validates the capability of the national wavelength standards based on a home-made Er-doped fiber femtosecond optical frequency comb to measure the laser frequencies ranging from visible to near-infrared region.Optical frequency conversion in the femtosecond optical frequency comb is achieved by combining spectral broadening in a highly nonlinear fiber with a single-point frequencydoubling scheme.The signal-to-noise ratio of the beat notes between the femtosecond optical frequency comb and the lasers at 633,698,729,780,1064,and 1542 nm is better than 30 d B.The frequency instability of the above lasers is evaluated by using a hydrogen clock signal with a instability of better than 1×10^(-13)at 1-s averaging time.The measurement is further validated by measuring the absolute optical frequency of an iodine-stabilized 532-nm laser and an acetylenestabilized 1542-nm laser.The results are within the uncertainty range of the international recommended values.Our results demonstrate the accurate optical frequency measurement of lasers at different frequencies using the femtosecond optical frequency comb,which is not only important for the precise and accurate traceability and calibration of the laser frequencies,but also provides technical support for establishing the national wavelength standards based on the femtosecond optical frequency comb.展开更多
An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure it...An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-kin-long fiber. reference frequency of this H-maser, is used for the optical this Sr clock is measured to be 429228004229873.7(1.4)Hz. A fiber optical frequency comb, phase-locked to the frequency measurement. The absolute frequency of展开更多
In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link pha...In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users.展开更多
We report on frequency measurement of the intercombination(5s^2)^1S0–(5s5p)^3P1transition of the four natural isotopes of strontium, including88^Sr(82.58%),87^Sr(7.0%),86^Sr(9.86%), and84^Sr(0.56%). A nar...We report on frequency measurement of the intercombination(5s^2)^1S0–(5s5p)^3P1transition of the four natural isotopes of strontium, including88^Sr(82.58%),87^Sr(7.0%),86^Sr(9.86%), and84^Sr(0.56%). A narrow-linewidth laser that is locked to an ultra-low expansion(ULE) optical cavity with a finesse of 12000 is evaluated at a linewidth of 200 Hz with a fractional frequency drift of 2.8×10^-13 at an integration time of 1 s. The fluorescence collector and detector are specially designed, based on a thermal atomic beam. Using a double-pass acousto-optic modulator(AOM) combined with a fiber and laser power stabilization configuration to detune the laser frequency enables high signal-to-noise ratios and precision saturated spectra to be obtained for the six transition lines, which allows us to determine the transition frequency precisely.The optical frequency is measured using an optical frequency synthesizer referenced to an H maser. Both the statistical values and the final values, including the corrections and uncertainties, are derived for a comparison with the values given in other works.展开更多
A novel method of measuring non-uniform strain along a fiber Bragg grating(FBG) using optical frequency domain reflectometry(OFDR) is proposed and experimentally demonstrated. This method can overcome the problems of ...A novel method of measuring non-uniform strain along a fiber Bragg grating(FBG) using optical frequency domain reflectometry(OFDR) is proposed and experimentally demonstrated. This method can overcome the problems of traditional non-uniform strain measurement methods for FBGs, i.e., the likelihood of chirping and multiple peaking in the spectrum when FBG is subjected to inhomogeneous strain fields. Wavelength interrogation is realized by OFDR with a narrow-line-width tunable laser as the optical source. When non-uniform strain distributions along areas adjacent to structural damage are measured by this method, good agreement is obtained between measurements and theoretical simulation results.展开更多
基金the National Key Research and Development Program of China(Grant No.2016YFF0200204)。
文摘Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently.Therefore,any optical frequency in visible to near-infrared region can be directly traced to a microwave frequency.As a result,the length unit“meter”is directly related to the time unit“second”.This paper validates the capability of the national wavelength standards based on a home-made Er-doped fiber femtosecond optical frequency comb to measure the laser frequencies ranging from visible to near-infrared region.Optical frequency conversion in the femtosecond optical frequency comb is achieved by combining spectral broadening in a highly nonlinear fiber with a single-point frequencydoubling scheme.The signal-to-noise ratio of the beat notes between the femtosecond optical frequency comb and the lasers at 633,698,729,780,1064,and 1542 nm is better than 30 d B.The frequency instability of the above lasers is evaluated by using a hydrogen clock signal with a instability of better than 1×10^(-13)at 1-s averaging time.The measurement is further validated by measuring the absolute optical frequency of an iodine-stabilized 532-nm laser and an acetylenestabilized 1542-nm laser.The results are within the uncertainty range of the international recommended values.Our results demonstrate the accurate optical frequency measurement of lasers at different frequencies using the femtosecond optical frequency comb,which is not only important for the precise and accurate traceability and calibration of the laser frequencies,but also provides technical support for establishing the national wavelength standards based on the femtosecond optical frequency comb.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91336212 and 91436104
文摘An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-kin-long fiber. reference frequency of this H-maser, is used for the optical this Sr clock is measured to be 429228004229873.7(1.4)Hz. A fiber optical frequency comb, phase-locked to the frequency measurement. The absolute frequency of
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB21000000)the Open Project Fund of State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences(No.SKLST202011)+1 种基金the National Natural Science Foundation of China(Nos.12103059,12103059,12303076,and 12303077)the Planned Project of Xi’an Bureau of Science and Technology,China(No.E019XK104).
文摘In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users.
基金Project supported by the National Natural Science Foundation of China(Grant No.61127901)the Key Project of the Chinese Academy of Sciences(Grant No.KJZD-EW-W02)
文摘We report on frequency measurement of the intercombination(5s^2)^1S0–(5s5p)^3P1transition of the four natural isotopes of strontium, including88^Sr(82.58%),87^Sr(7.0%),86^Sr(9.86%), and84^Sr(0.56%). A narrow-linewidth laser that is locked to an ultra-low expansion(ULE) optical cavity with a finesse of 12000 is evaluated at a linewidth of 200 Hz with a fractional frequency drift of 2.8×10^-13 at an integration time of 1 s. The fluorescence collector and detector are specially designed, based on a thermal atomic beam. Using a double-pass acousto-optic modulator(AOM) combined with a fiber and laser power stabilization configuration to detune the laser frequency enables high signal-to-noise ratios and precision saturated spectra to be obtained for the six transition lines, which allows us to determine the transition frequency precisely.The optical frequency is measured using an optical frequency synthesizer referenced to an H maser. Both the statistical values and the final values, including the corrections and uncertainties, are derived for a comparison with the values given in other works.
基金supported by the National High Technology Research and Development Program of China under Grant No.2012AA041203
文摘A novel method of measuring non-uniform strain along a fiber Bragg grating(FBG) using optical frequency domain reflectometry(OFDR) is proposed and experimentally demonstrated. This method can overcome the problems of traditional non-uniform strain measurement methods for FBGs, i.e., the likelihood of chirping and multiple peaking in the spectrum when FBG is subjected to inhomogeneous strain fields. Wavelength interrogation is realized by OFDR with a narrow-line-width tunable laser as the optical source. When non-uniform strain distributions along areas adjacent to structural damage are measured by this method, good agreement is obtained between measurements and theoretical simulation results.