Cognitive optical network is the intermediate to combine artificial intelligence technology with network,and also the important network technology to promote network intelligence level constantly.In the paper,it analy...Cognitive optical network is the intermediate to combine artificial intelligence technology with network,and also the important network technology to promote network intelligence level constantly.In the paper,it analyzes the cognitive optical network structure with the application of artificial intelligence technology by starting from the basic conditions of cognitive network and cognitive optional network on the basis of fully understanding the connotation of cognitive network and cognitive optical network,and explores its self-governance functions,so as to better realize the self-optimization and self-configuration of network.展开更多
Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precis...Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precision machining,the process of digital ultra-precision machining and its technical contents were presented in this paper. In the conclusions,it was stated that the digitalization of ultra-precision machining will be an economical and efficient way for the production of new sorts of optical workpieces.展开更多
An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the ca...An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the cavity length of EF- PI fiber optical sensor. There are many ways to achieve the demodulation of the cavity length. For shortcomings of the big intensity demodulation error and complex structure of phase demodulation, this paper proposes that BP neural net-work is used to locate the special peak points in normalized interference spectrum and combining the advantages of the unimodal and bimodal measurement achieves the demodulation of the cavity length. Through online simulation and actual measurement, the results show that the peak positioning technology based on BP neural network can not only achieve high-precision demodulation of the cavity length, but also achieve an absolute measurement of cavity length in large dynamic range.展开更多
Semiconductor perovskite films are now being widely investigated as light harvesters in solar cells with ever-increasing power conversion efficiencies,which have motivated the fabrication of other optoelectronic devic...Semiconductor perovskite films are now being widely investigated as light harvesters in solar cells with ever-increasing power conversion efficiencies,which have motivated the fabrication of other optoelectronic devices,such as light-emitting diodes,lasers,and photodetectors.Their superior material and optical properties are shared by the counterpart colloidal nanocrystals(NCs),with the additional advantage of quantum confinement that can yield size-dependent optical emission ranging from the near-UV to near-infrared wavelengths.So far,intensive research efforts have been devoted to the optical characterization of perovskite NC ensembles,revealing not only fundamental exciton relaxation and recombination dynamics but also lowthreshold amplified spontaneous emission and novel superfluorescence effects.Meanwhile,the application of single-particle spectroscopy techniques to perovskite NCs has helped to resolve a variety of optical properties for which there are few equivalents in traditional colloidal NCs,mainly including nonblinking photoluminescence,suppressed spectral diffusion,stable exciton fine structures,and coherent singlephoton emission.While the main purpose of ensemble optical studies is to guide the smooth development of perovskite NCs in classical optoelectronic applications,the rich observations from single-particle optical studies mark the emergence of a potential platform that can be exploited for quantum information technologies.展开更多
The presentation will give an overview over different classes of signal impairments in ultra-long-haul and high-speed optical WDM transmission systems and adequate approaches for suppression, mitigation or compensatio...The presentation will give an overview over different classes of signal impairments in ultra-long-haul and high-speed optical WDM transmission systems and adequate approaches for suppression, mitigation or compensation are discussed.展开更多
A designed visual geometry group(VGG)-based convolutional neural network(CNN)model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direc...A designed visual geometry group(VGG)-based convolutional neural network(CNN)model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direct detection channel performance using eye diagram measurements.Experimental results show that the proposed technique can achieve a high accuracy in jointly monitoring modulation format,probabilistic shaping,roll-off factor,baud rate,optical signal-to-noise ratio,and chromatic dispersion.The designed VGG-based CNN model outperforms the other four traditional machine-learning methods in different scenarios.Furthermore,the multitask learning model combined with MobileNet CNN is designed to improve the flexibility of the network.Compared with the designed VGG-based CNN,the MobileNet-based MTL does not need to train all the classes,and it can simultaneously monitor single parameter or multiple parameters without sacrificing accuracy,indicating great potential in various monitoring scenarios.展开更多
Optical network plays an important role in telecommunication networks, which supports high-capacity and long-distance transmission of Internet traffic. However, as the scaling and evolving of optical networks, it face...Optical network plays an important role in telecommunication networks, which supports high-capacity and long-distance transmission of Internet traffic. However, as the scaling and evolving of optical networks, it faces great challenges in terms of network operation, optimization and maintenance. Artificial intelligence(AI) has been proved to have superiority on addressing complex problems, by mimicking cognitive skills similar with human mind. In this paper, we provide a comprehensive investigation of AI applications in optical transport network. First, we give a general AI-based control architecture for optical transport networks. Then, we discuss several typical applications of AI model and algorithms in optical networks. Different use cases are considered, including network planning, quality of transmission(QoT) estimation, network reconfiguration, traffic prediction, failure management and so on. In addition, we also present some potential technical challenges for AI application in optical network for the next years.展开更多
为提升网络的传输效率和传输质量,研究基于软件定义光传送网(Software Optical Transport Network,SoTN)技术和第五代移动通信技术(5th Generation Mobile Communication Technology,5G)的传输组网技术。首先分析了5G传输网端到端架构...为提升网络的传输效率和传输质量,研究基于软件定义光传送网(Software Optical Transport Network,SoTN)技术和第五代移动通信技术(5th Generation Mobile Communication Technology,5G)的传输组网技术。首先分析了5G传输网端到端架构存在的优势及不足,其次采用SOTN技术和5G网络切片技术设计了一种传输组网方案,最后进行实验分析。测试结果表明,该传输组网技术具有较好的应用效果,数据包的传输成功率均在90.00%以上,并且端到端的最大时延为16.11ms,能够保证网络的传输效果。展开更多
文摘Cognitive optical network is the intermediate to combine artificial intelligence technology with network,and also the important network technology to promote network intelligence level constantly.In the paper,it analyzes the cognitive optical network structure with the application of artificial intelligence technology by starting from the basic conditions of cognitive network and cognitive optional network on the basis of fully understanding the connotation of cognitive network and cognitive optical network,and explores its self-governance functions,so as to better realize the self-optimization and self-configuration of network.
文摘Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precision machining,the process of digital ultra-precision machining and its technical contents were presented in this paper. In the conclusions,it was stated that the digitalization of ultra-precision machining will be an economical and efficient way for the production of new sorts of optical workpieces.
文摘An Extrinsic Fabry-Perot Interferometric (EFPI) fiber optical sensor system is an online testing system for the gas density. The system achieves the measurement of gas density information mainly by demodulating the cavity length of EF- PI fiber optical sensor. There are many ways to achieve the demodulation of the cavity length. For shortcomings of the big intensity demodulation error and complex structure of phase demodulation, this paper proposes that BP neural net-work is used to locate the special peak points in normalized interference spectrum and combining the advantages of the unimodal and bimodal measurement achieves the demodulation of the cavity length. Through online simulation and actual measurement, the results show that the peak positioning technology based on BP neural network can not only achieve high-precision demodulation of the cavity length, but also achieve an absolute measurement of cavity length in large dynamic range.
基金supported by the National Key R&D Program of China(Grant Nos.2019YFA0308700 and 2017YFA0303700)the National Natural Science Foundation of China(Grant Nos.61974058,11574147,and 11974164)the PAPD of Jiangsu Higher Education Institutions
文摘Semiconductor perovskite films are now being widely investigated as light harvesters in solar cells with ever-increasing power conversion efficiencies,which have motivated the fabrication of other optoelectronic devices,such as light-emitting diodes,lasers,and photodetectors.Their superior material and optical properties are shared by the counterpart colloidal nanocrystals(NCs),with the additional advantage of quantum confinement that can yield size-dependent optical emission ranging from the near-UV to near-infrared wavelengths.So far,intensive research efforts have been devoted to the optical characterization of perovskite NC ensembles,revealing not only fundamental exciton relaxation and recombination dynamics but also lowthreshold amplified spontaneous emission and novel superfluorescence effects.Meanwhile,the application of single-particle spectroscopy techniques to perovskite NCs has helped to resolve a variety of optical properties for which there are few equivalents in traditional colloidal NCs,mainly including nonblinking photoluminescence,suppressed spectral diffusion,stable exciton fine structures,and coherent singlephoton emission.While the main purpose of ensemble optical studies is to guide the smooth development of perovskite NCs in classical optoelectronic applications,the rich observations from single-particle optical studies mark the emergence of a potential platform that can be exploited for quantum information technologies.
文摘The presentation will give an overview over different classes of signal impairments in ultra-long-haul and high-speed optical WDM transmission systems and adequate approaches for suppression, mitigation or compensation are discussed.
基金supported by the National Key Research and Development Program of China (Grant No.2019YFB1803700)the Key Technologies Research and Development Program of Tianjin (Grant No.20YFZCGX00440).
文摘A designed visual geometry group(VGG)-based convolutional neural network(CNN)model with small computational cost and high accuracy is utilized to monitor pulse amplitude modulation-based intensity modulation and direct detection channel performance using eye diagram measurements.Experimental results show that the proposed technique can achieve a high accuracy in jointly monitoring modulation format,probabilistic shaping,roll-off factor,baud rate,optical signal-to-noise ratio,and chromatic dispersion.The designed VGG-based CNN model outperforms the other four traditional machine-learning methods in different scenarios.Furthermore,the multitask learning model combined with MobileNet CNN is designed to improve the flexibility of the network.Compared with the designed VGG-based CNN,the MobileNet-based MTL does not need to train all the classes,and it can simultaneously monitor single parameter or multiple parameters without sacrificing accuracy,indicating great potential in various monitoring scenarios.
基金supported by the National Natural Science Foundation of China(61901053,61831003,62021005)the Project of Jiangsu Engineering Research Center of Novel Optical Fiber Technologyand Communication Network,Soochow University(SDGC2117)the Fundamental Research Funds for the Central Universities(2021RC12).
文摘Optical network plays an important role in telecommunication networks, which supports high-capacity and long-distance transmission of Internet traffic. However, as the scaling and evolving of optical networks, it faces great challenges in terms of network operation, optimization and maintenance. Artificial intelligence(AI) has been proved to have superiority on addressing complex problems, by mimicking cognitive skills similar with human mind. In this paper, we provide a comprehensive investigation of AI applications in optical transport network. First, we give a general AI-based control architecture for optical transport networks. Then, we discuss several typical applications of AI model and algorithms in optical networks. Different use cases are considered, including network planning, quality of transmission(QoT) estimation, network reconfiguration, traffic prediction, failure management and so on. In addition, we also present some potential technical challenges for AI application in optical network for the next years.
文摘为提升网络的传输效率和传输质量,研究基于软件定义光传送网(Software Optical Transport Network,SoTN)技术和第五代移动通信技术(5th Generation Mobile Communication Technology,5G)的传输组网技术。首先分析了5G传输网端到端架构存在的优势及不足,其次采用SOTN技术和5G网络切片技术设计了一种传输组网方案,最后进行实验分析。测试结果表明,该传输组网技术具有较好的应用效果,数据包的传输成功率均在90.00%以上,并且端到端的最大时延为16.11ms,能够保证网络的传输效果。