针对电氢混合储能系统在平抑直流微网中功率波动时面临的功率分配问题,提出了一种基于级联式模糊控制的电氢耦合直流微网能量管理策略。该策略中一次模糊控制器依据储氢罐储氢状态(stateofhydrogenstorage,SOH)与锂电池荷电状态(state o...针对电氢混合储能系统在平抑直流微网中功率波动时面临的功率分配问题,提出了一种基于级联式模糊控制的电氢耦合直流微网能量管理策略。该策略中一次模糊控制器依据储氢罐储氢状态(stateofhydrogenstorage,SOH)与锂电池荷电状态(state of charge, SOC)求解出一次功率分配因子,对直流微网净功率进行一次分配;二次模糊控制器结合一次功率分配参考值与SOH对一次功率分配因子作出校正。此外,为使氢储能系统中具有非线性工作特性的电流控制型装置(电解槽、燃料电池)能够对能量管理系统作出高效响应,采用插值法将功率分配参考值转换为电流参考值。通过Matlab/Simulink仿真结果证明,所提能量管理策略有效缩小了氢储能系统在非合理区间的功率波动范围并提高了氢储能系统中装置的响应精度与速度。展开更多
风光制氢已经成为了解决大规模风能和太阳能消纳的有效途径。针对传统方法未考虑锂电池储能系统和氢储能系统的功率分配和协调运行问题,提出了含电/氢复合储能的直流微电网模糊功率分配和协调控制方法,建立了碱式电解槽、储氢罐以及燃...风光制氢已经成为了解决大规模风能和太阳能消纳的有效途径。针对传统方法未考虑锂电池储能系统和氢储能系统的功率分配和协调运行问题,提出了含电/氢复合储能的直流微电网模糊功率分配和协调控制方法,建立了碱式电解槽、储氢罐以及燃料电池的数学模型,设计了模糊逻辑控制器,给出了不同接口变换器的控制方法。最后,搭建了仿真模型和基于RT-LAB硬件在环实验平台,对所提出算法和传统方法进行了仿真和实验研究。仿真和实验结果表明,所提出方法能够使得锂电池荷电状态(state of charge,SOC)和储氢罐的氢状态(state of hydrogen,SOH)逐渐趋于合理工作区间,提升锂电池的使用寿命,减小了各接口装置控制模式切换次数。展开更多
文摘针对电氢混合储能系统在平抑直流微网中功率波动时面临的功率分配问题,提出了一种基于级联式模糊控制的电氢耦合直流微网能量管理策略。该策略中一次模糊控制器依据储氢罐储氢状态(stateofhydrogenstorage,SOH)与锂电池荷电状态(state of charge, SOC)求解出一次功率分配因子,对直流微网净功率进行一次分配;二次模糊控制器结合一次功率分配参考值与SOH对一次功率分配因子作出校正。此外,为使氢储能系统中具有非线性工作特性的电流控制型装置(电解槽、燃料电池)能够对能量管理系统作出高效响应,采用插值法将功率分配参考值转换为电流参考值。通过Matlab/Simulink仿真结果证明,所提能量管理策略有效缩小了氢储能系统在非合理区间的功率波动范围并提高了氢储能系统中装置的响应精度与速度。
文摘风光制氢已经成为了解决大规模风能和太阳能消纳的有效途径。针对传统方法未考虑锂电池储能系统和氢储能系统的功率分配和协调运行问题,提出了含电/氢复合储能的直流微电网模糊功率分配和协调控制方法,建立了碱式电解槽、储氢罐以及燃料电池的数学模型,设计了模糊逻辑控制器,给出了不同接口变换器的控制方法。最后,搭建了仿真模型和基于RT-LAB硬件在环实验平台,对所提出算法和传统方法进行了仿真和实验研究。仿真和实验结果表明,所提出方法能够使得锂电池荷电状态(state of charge,SOC)和储氢罐的氢状态(state of hydrogen,SOH)逐渐趋于合理工作区间,提升锂电池的使用寿命,减小了各接口装置控制模式切换次数。