The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu...The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.展开更多
A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stres...A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.展开更多
Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(...Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.展开更多
In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or ...In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or temperature sensors.The high cost limits the spatial resolution,which ultimately affects the measuring accuracy of the ISW amplitude.In this paper,we developed an experimental measurement system for detecting ISWs based on the stimulated Raman scattering in distributed optical fibers.This system has the advantages of high precision,low cost,and easy operation.The experimental results show that the system is consistent with CTDs in the measurement of vertical ocean temperature variation.The spatial resolution of the system can reach 1.0 m and the measuring accuracy of temperature is 0.2℃.We successfully detected 3 ISWs by the system in the South China Sea and two optical remote sensing images collected on May 18,2021,the same day of two detected ISWs,verify the occurrence of the measured ISWs.We used the image pairs method to calculate the phase velocity of ISW and the result is 1.71 ms^(-1).By extracting the distances between wave packets,it can be found that the semi-diurnal tide generates the detected ISWs.The impact of the tidal current velocity on the ISW in amplitude is undeniable.Undoubtedly,the system has a great application prospect for detecting ISWs and other dynamic phenomena in the ocean.展开更多
Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells...Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells with spatial information.Therefore,in this review,we revisit the principles of optical contrast related to those biomolecules and the optical techniques that transform optical contrast into detectable optical signals.Then,we describe optical imaging to achieve threedimensional spatial discrimination for biological tisutes.Due to the milky appearance of tissues,the spatial information burred deep in the whole organ.Fortunately,strategies developed in the last decade could circumvent this issue and lead us into a new era of investigation of the cells with their original spatial information.展开更多
Graphite has been currently considered as a promising cathode material in dual ion batteries(DIBs)due to its unique features of sp2 hybridized carbon and stacked two-dimensional layered structures.However,unexpected v...Graphite has been currently considered as a promising cathode material in dual ion batteries(DIBs)due to its unique features of sp2 hybridized carbon and stacked two-dimensional layered structures.However,unexpected volume/thickness changes in the graphite cathodes,induced by the intercalation/deintercalation of anions with large molecular size have been known to be a critical problem in designing DIB cells.To understand the volume/thickness changes in the DIB electrodes,in operando optical observing apparatus has been employed to observe the cross-section view of a graphite-based cathode upon cycles in the present work.The observation suggests that the cathode initially presented a huge irreversible thickness change(60%),and such thickness variation was prone to reduce and remain <20% in the following cycles.The results from both in operando observation and electrochemical characterizations collectively indicate that the greater thickness variation at initial cycle should be attributed to both anion intercalation into graphite-based cathodes and irreversible decomposition of chemical components in the DIB system.The method here highlights a universal route for fundamentally understanding the electrodes of huge volume variation.展开更多
The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two m...The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.展开更多
20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents ...20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents of internal tides are energetic and diurnal constituents (O1 and K1) are dominating. In the observational period, the current vectors of these four constituents all rotate clockwise and the maximum semi-major axe of internal tidal ellipses is more than 14 cm/s. The variation of ocean temperature shows that the internal tides present obvious quasi-diurnal oscillation and the average amplitude reaches 50 m. Furthermore, these internal tides carry high energy and appear to be intermittent. The maximum values of KE (PE) during the observational period are up to 2 (3.5) k J/m^2 for diurnal internal tides, and up to 1 (1.5) k J/m^2 for semidiurnal internal tides.展开更多
The CarbonTracker(CT) model has been used in previous studies for understanding and predicting the sources, sinks, and dynamics that govern the distribution of atmospheric CO_2 at varying ranges of spatial and tempora...The CarbonTracker(CT) model has been used in previous studies for understanding and predicting the sources, sinks, and dynamics that govern the distribution of atmospheric CO_2 at varying ranges of spatial and temporal scales. However, there are still challenges for reproducing accurate model-simulated CO_2 concentrations close to the surface, typically associated with high spatial heterogeneity and land cover. In the present study, we evaluated the performance of nested-grid CT model simulations of CO_2 based on the CT2016 version through comparison with in-situ observations over East Asia covering the period 2009–13. We selected sites located in coastal, remote, inland, and mountain areas. The results are presented at diurnal and seasonal time periods. At target stations, model agreement with in-situ observations was varied in capturing the diurnal cycle. Overall, biases were less than 6.3 ppm on an all-hourly mean basis, and this was further reduced to a maximum of 4.6 ppm when considering only the daytime. For instance, at Anmyeondo, a small bias was obtained in winter, on the order of 0.2 ppm. The model revealed a diurnal amplitude of CO_2 that was nearly flat in winter at Gosan and Anmyeondo stations, while slightly overestimated in the summertime. The model's performance in reproducing the diurnal cycle remains a challenge and requires improvement. The model showed better agreement with the observations in capturing the seasonal variations of CO_2 during daytime at most sites, with a correlation coefficient ranging from 0.70 to 0.99. Also, model biases were within-0.3 and 1.3 ppm, except for inland stations(7.7 ppm).展开更多
Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is ...Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.展开更多
Diffuse attenuation coefficient (DAC) of sea water is an important parameter in ocean thermodynamics and biology, reflecting the absorption capability of sea water in different layers. In the Arctic Ocean, however, ...Diffuse attenuation coefficient (DAC) of sea water is an important parameter in ocean thermodynamics and biology, reflecting the absorption capability of sea water in different layers. In the Arctic Ocean, however, sea ice affects the radiance/irradiance measurements of upper ocean, which results in obvious errors in the DAC calculation. To better understand the impacts of sea ice on the ocean optics observations, a series ofin situ experiments were carried out in the summer of 2009 in the southern Beaufort Sea. Observational results show that the profiles of spectral diffuse attenuation coefficients of seawater near ice cover within upper surface of 50 m were not contaminated by the sea ice with a solar zenith angle of 55&#176;, relative azimuth angle of 110&#176;≤φ≤115&#176; and horizontal distance between the sensors and ice edge of greater than 25 m. Based on geometric optics theory, the impact of ice cover could be avoided by adjusting the relative solar azimuth angle in a particular distance between the instrument and ice. Under an overcast sky, ice cover being 25 m away from sensors did not affect the profiles of spectral DACs within the upper 50 m either. Moreover, reli-able spectral DACs of seawater could be obtained with sensors completely covered by sea ice.展开更多
In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in th...In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.展开更多
Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009. The comparison confirms tha...Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009. The comparison confirms that QuikSCAT estimates of wind speed and direction are generally accurate, except for the extremes of high wind speeds (>13.8m/s) and very low wind speeds (<1.5m/s) where direction is poorly predicted. In-situ observations show that the summer monsoon in the northern SCS starts between May 6 and June 1. From March 13, 2010 to August 31, 2010, comparisons of sea surface temperature (SST) and rainfall from AMSR-E with data from a buoy located at Xisha Islands, as well as wind measurements derived from ASCAT and observations from an automatic weather station show that QuikSCAT, ASCAT and AMSR-E data are good enough for research. It is feasible to optimize the usage of remote-sensing data if validated with in-situ measurements. Remarkable changes were observed in wind, barometric pressure, humidity, outgoing longwave radiation (OLR), air temperature, rainfall and SST during the monsoon onset. The eastward shift of western Pacific subtropical high and the southward movement of continental cold front preceded the monsoon onset in SCS. The starting dates of SCS summer monsoon indicated that the southwest monsoon starts in the Indochinese Peninsula and forms an eastward zonal belt, and then the belt bifurcates in the SCS, with one part moving northeastward into the tropical western North Pacific, and another southward into western Kalimantan. This largely determined the pattern of the SCS summer monsoon. Wavelet analysis of zonal wind and OLR at Xisha showed that intra-seasonal variability played an important role in the summer. This work improves the accuracy of the amplitude of intra-seasonal and synoptic variation obtained from remote-sensed data.展开更多
The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irrad...The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irradiation with the fluence of 5.74×10^(16)He^(+)/cm^(2)at 673 K).Both He^(+)irradiation and subsequently annealing induced the initiation,aggregation,and growth of helium bubbles.Temperature had a significant effect on the initiation and evolution of helium bubbles.The higher the irradiation temperature was,the larger the bubble size at the same irradiation fluence would be.At 1173 K irradiation,helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size,which would induce the formation of microcracks.At the same time,the geometry of helium bubbles changed from sphericity to polyhedron.The polyhedral bubbles preferred to grow in the shape bounded by{100}planes.After statistical analysis of the characteristic parameters of helium bubbles,the functions between the average size,number density of helium bubbles,swelling rate and irradiation damage were obtained.Meanwhile,an empirical formula for calculating the size of helium bubbles during the annealing was also provided.展开更多
Objective In geo-marine science,the generalized bottom boundary layer(BBL)represents a layer between sediments and seawater.The BBL plays an important role in geological,geobiochemical,geophysical and geotechnical r...Objective In geo-marine science,the generalized bottom boundary layer(BBL)represents a layer between sediments and seawater.The BBL plays an important role in geological,geobiochemical,geophysical and geotechnical research because it is the connection region of hydrosphere,展开更多
The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations...The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations show that the interfaces between 24 martensite variants have different reaction to applied stress. The A/C type and A/B type interfaces have good mobil-ity, the A/D type interface has bad mobiIity, and the different-group-intervariant interfaces are basically immobile.展开更多
The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific educa...The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific education,outreach,and research.The telescope system is designed in an“open”format so that the solar tower architecture can be integrated with it,and visitors can watch the observations live from inside the tower.Equipped with adaptive optics,a high-resolution imaging system,and an integral field unit spectro-imaging system,this telescope can obtain high-resolution solar images in the TiO and Hαbands,and perform spectral image reconstruction using 400 optical fibers at selected wavelengths.It can be used not only in public education and scientific outreach but also in solar physics research.展开更多
An in situ observation of the s'phase morphology and its orientation with the matrix in an Al-Li base alloy was carried out by means of double-tilt rotating around[220]a in a transmission electron microscope(TEM)....An in situ observation of the s'phase morphology and its orientation with the matrix in an Al-Li base alloy was carried out by means of double-tilt rotating around[220]a in a transmission electron microscope(TEM).The results show that the s'phase precipitates in the form of bundles.The units of s'phase are lath-shaped,grow along the<100>,orientation,and have habit planes of{210}*.Many units of the s'phase grow in the same orientation and get together to form a plate-shaped bundle of s'phase laths which lie on the{110}a planes.展开更多
In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number ...In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number of the dark phases culminated in about 50 s during soaking at 900℃. With the increase of soaking time the area proportion of the dark phases increased and reached the maximum value in about 3 min, When temperature rose from 900 ℃, the dark phases remained steady initially, but started to dissolve into the matrix at about 1 060 ℃ and completely disappeared at 1 132℃. When the specimen soaked at 900 ℃ was cooled down to room temperature (RT), the dark phases kept stable. Energy spectrum analysis results showed that the dark phases contained much more Cr and Mn elements than the matrix and,were also rich in V. Tensile test results showed that the dark phase strengthened the steel with the maximum tensile strength obtained after soaking at 900 ℃ for 3 minutes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51909136 and 42177168)Project of Youth Inno vation Promotion Association of Chinese Academy of Sciences(No.2021326)the Open Research Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2020KDZ03)。
文摘The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction.
基金the Project Support of NSFC(No.U19B6003-05 and No.52074314)。
文摘A method for in-situ stress measurement via fiber optics was proposed. The method utilizes the relationship between rock mass elastic parameters and in-situ stress. The approach offers the advantage of long-term stress measurements with high spatial resolution and frequency, significantly enhancing the ability to measure in-situ stress. The sensing casing, spirally wrapped with fiber optic, is cemented into the formation to establish a formation sensing nerve. Injecting fluid into the casing generates strain disturbance, establishing the relationship between rock mass properties and treatment pressure.Moreover, an optimization algorithm is established to invert the elastic parameters of formation via fiber optic strains. In the first part of this paper series, we established the theoretical basis for the inverse differential strain analysis method for in-situ stress measurement, which was subsequently verified using an analytical model. This paper is the fundamental basis for the inverse differential strain analysis method.
基金funded by the National Natural Science Foundation of China(11727805,12103057)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021378).
文摘Adaptive optics(AO)is essential for high-quality ground-based observations with large telescopes because it counters the impact of wavefront aberrations caused by atmospheric turbulence.The new vacuum solar telescope(NVST)is one of the most important high-resolution solar observation instruments in the world.Three sets of solar adaptive optics systems have been developed and installed on this telescope:conventional adaptive optics,ground layer adaptive optics,and multi-conjugate adaptive optics.These have been in operation from 2018 to 2023.This paper details the development and application of solar adaptive optics on the NVST and discusses the newest instrumentation.
基金National Natural Science Foundation of China(Nos.61871353,62031005)。
文摘In-situ measurement of internal solitary waves(ISWs)is complicated in the ocean due to their randomness.At present,the ISWs are mainly detected by the chain structure of conductivity-temperature-depth systems(CTDs)or temperature sensors.The high cost limits the spatial resolution,which ultimately affects the measuring accuracy of the ISW amplitude.In this paper,we developed an experimental measurement system for detecting ISWs based on the stimulated Raman scattering in distributed optical fibers.This system has the advantages of high precision,low cost,and easy operation.The experimental results show that the system is consistent with CTDs in the measurement of vertical ocean temperature variation.The spatial resolution of the system can reach 1.0 m and the measuring accuracy of temperature is 0.2℃.We successfully detected 3 ISWs by the system in the South China Sea and two optical remote sensing images collected on May 18,2021,the same day of two detected ISWs,verify the occurrence of the measured ISWs.We used the image pairs method to calculate the phase velocity of ISW and the result is 1.71 ms^(-1).By extracting the distances between wave packets,it can be found that the semi-diurnal tide generates the detected ISWs.The impact of the tidal current velocity on the ISW in amplitude is undeniable.Undoubtedly,the system has a great application prospect for detecting ISWs and other dynamic phenomena in the ocean.
基金supported by the National Science and Technology Innovation 2030 Grant No. (2021ZD0200104)National Nature Science Foundation of China (81871082).
文摘Cells are the basic unit of human organs that are not fully understood.The revolutionary advancements of optical imaging alowed us to observe single cells in whole organs,revealing the complicated composition of cells with spatial information.Therefore,in this review,we revisit the principles of optical contrast related to those biomolecules and the optical techniques that transform optical contrast into detectable optical signals.Then,we describe optical imaging to achieve threedimensional spatial discrimination for biological tisutes.Due to the milky appearance of tissues,the spatial information burred deep in the whole organ.Fortunately,strategies developed in the last decade could circumvent this issue and lead us into a new era of investigation of the cells with their original spatial information.
基金Financial support from 973 Project (2015CB932500)the National Natural Science Foundation of China (11672341,111572002,51302011)+2 种基金Innovative Research Groups of the National Natural Science Foundation of China (11521202)National Materials Genome Project (2016YFB0700600)Beijing Natural Science Foundation (16L00001,2182065) is gratefully acknowledged
文摘Graphite has been currently considered as a promising cathode material in dual ion batteries(DIBs)due to its unique features of sp2 hybridized carbon and stacked two-dimensional layered structures.However,unexpected volume/thickness changes in the graphite cathodes,induced by the intercalation/deintercalation of anions with large molecular size have been known to be a critical problem in designing DIB cells.To understand the volume/thickness changes in the DIB electrodes,in operando optical observing apparatus has been employed to observe the cross-section view of a graphite-based cathode upon cycles in the present work.The observation suggests that the cathode initially presented a huge irreversible thickness change(60%),and such thickness variation was prone to reduce and remain <20% in the following cycles.The results from both in operando observation and electrochemical characterizations collectively indicate that the greater thickness variation at initial cycle should be attributed to both anion intercalation into graphite-based cathodes and irreversible decomposition of chemical components in the DIB system.The method here highlights a universal route for fundamentally understanding the electrodes of huge volume variation.
基金supported by the National High-Tech Research and Development Program of China (No.2008AA03E502)the Science and Technology Support Program of China (No.2006BAE03A06)
文摘The microstructure and crack behaviour of twinning induced plasticity (TWIP) steel during tensile deformation was investigated with in-situ scanning electron microscopy (SEM). The results show that there are two modes of plastic deformation during tensile test in the Fe-Mn-C TWIP steel: dislocation gliding and deformation twins. During the process of tensile deformation, secondary deformed twins are found. Inclusions have played a role in the course of ductile fracture, and microcracks initiate from inclusions and twin-twin intersections.
基金supported by the National Natural Science Foundation of China (No.41176025, 40876008)the SCSMEX project
文摘20-day in-situ ADCP current and CTD data are used to investigate the characteristics and energy of the internal tides in the northern South China Sea (NSCS). The results show that the O1, K1, M2 and S2 constituents of internal tides are energetic and diurnal constituents (O1 and K1) are dominating. In the observational period, the current vectors of these four constituents all rotate clockwise and the maximum semi-major axe of internal tidal ellipses is more than 14 cm/s. The variation of ocean temperature shows that the internal tides present obvious quasi-diurnal oscillation and the average amplitude reaches 50 m. Furthermore, these internal tides carry high energy and appear to be intermittent. The maximum values of KE (PE) during the observational period are up to 2 (3.5) k J/m^2 for diurnal internal tides, and up to 1 (1.5) k J/m^2 for semidiurnal internal tides.
基金supported by the Korea Meteorological Administration Research and Development Program "Research and Development for KMA Weather, and Earth system Services-Development and Assessment of AR6 Climate Change Scenarios" under Grant (KMA2018-00321)
文摘The CarbonTracker(CT) model has been used in previous studies for understanding and predicting the sources, sinks, and dynamics that govern the distribution of atmospheric CO_2 at varying ranges of spatial and temporal scales. However, there are still challenges for reproducing accurate model-simulated CO_2 concentrations close to the surface, typically associated with high spatial heterogeneity and land cover. In the present study, we evaluated the performance of nested-grid CT model simulations of CO_2 based on the CT2016 version through comparison with in-situ observations over East Asia covering the period 2009–13. We selected sites located in coastal, remote, inland, and mountain areas. The results are presented at diurnal and seasonal time periods. At target stations, model agreement with in-situ observations was varied in capturing the diurnal cycle. Overall, biases were less than 6.3 ppm on an all-hourly mean basis, and this was further reduced to a maximum of 4.6 ppm when considering only the daytime. For instance, at Anmyeondo, a small bias was obtained in winter, on the order of 0.2 ppm. The model revealed a diurnal amplitude of CO_2 that was nearly flat in winter at Gosan and Anmyeondo stations, while slightly overestimated in the summertime. The model's performance in reproducing the diurnal cycle remains a challenge and requires improvement. The model showed better agreement with the observations in capturing the seasonal variations of CO_2 during daytime at most sites, with a correlation coefficient ranging from 0.70 to 0.99. Also, model biases were within-0.3 and 1.3 ppm, except for inland stations(7.7 ppm).
基金supported by Swedish Institute of Sweden (No. 200/01954/2007/China Bilateral programme)
文摘Crack initiation, propagation and microfracture processes of austempered high silicon cast steel have been investigated by using an in-situ tensile stage installed inside a scanning electron microscope chamber. It is revealed that micro cracks always nucleate at the yielding near imperfections and the boundary of matrix-inclusions due to the stress concentration. There are four types of crack propagations in the matrix: crack propagates along the boundary of two clusters of bainitic ferrite; crack propagates along the boundary of ferrite-austenite in bainitic ferrite laths; crack propagates into bainitic ferrite laths; crack nucleates and propagates in the high carbon brittle plate shape martensite which is transformed from some blocky retained austenite due to plastic deformation. Based on the observation and analysis of microfracture processes, a schematic diagram of the crack nucleation and propagation process of high silicon cast steel is proposed.
基金The National Natural Science Foundation of China under contract No.41206174China Postdoctoral Science Foundation under contract No.2012M511546the Chinese Polar Scinece Strategy Fund under contract No.20110204
文摘Diffuse attenuation coefficient (DAC) of sea water is an important parameter in ocean thermodynamics and biology, reflecting the absorption capability of sea water in different layers. In the Arctic Ocean, however, sea ice affects the radiance/irradiance measurements of upper ocean, which results in obvious errors in the DAC calculation. To better understand the impacts of sea ice on the ocean optics observations, a series ofin situ experiments were carried out in the summer of 2009 in the southern Beaufort Sea. Observational results show that the profiles of spectral diffuse attenuation coefficients of seawater near ice cover within upper surface of 50 m were not contaminated by the sea ice with a solar zenith angle of 55&#176;, relative azimuth angle of 110&#176;≤φ≤115&#176; and horizontal distance between the sensors and ice edge of greater than 25 m. Based on geometric optics theory, the impact of ice cover could be avoided by adjusting the relative solar azimuth angle in a particular distance between the instrument and ice. Under an overcast sky, ice cover being 25 m away from sensors did not affect the profiles of spectral DACs within the upper 50 m either. Moreover, reli-able spectral DACs of seawater could be obtained with sensors completely covered by sea ice.
基金funded by the Natural Science Foundation of China under grant No:50771031GM Research Funding under contract No:GM-RP-07-211
文摘In-situ observation of porosity formation during directional solidification of two Al-Si alloys (7%Si and 13%Si) was made by using of micro-focus X-ray imaging.In both alloys,small spherical pores initially form in the melt far away from the eutectic solid-liquid (S/L) interface and then grow and coagulate during solidification.Some pores can float and escape from the solidifying melt front at a relatively high velocity.At the end of solidification,the remaining pores maintain spherical morphology in the near eutectic alloy but become irregular in the hypoeutectic alloy.This is attributed to different solidification modes and aluminum dendrite interactions between the two alloys.The mechanism of the porosity formation is briefly discussed in this paper.
基金Supported by the National Basic Research Program of China (973 Program)(No. 2011CB403504)the Knowledge Innovation Program of Chinese Academy of Sciences (Nos. KZCX2-YW-Q11-02, KZCX2-YW-Y202)the National Natural Science Foundation of China (Nos. 40830851, 41006011)
文摘Wind measurements derived from QuikSCAT data were compared with those measured by anemometer on Yongxing Island in the South China Sea (SCS) for the period from April 2008 to November 2009. The comparison confirms that QuikSCAT estimates of wind speed and direction are generally accurate, except for the extremes of high wind speeds (>13.8m/s) and very low wind speeds (<1.5m/s) where direction is poorly predicted. In-situ observations show that the summer monsoon in the northern SCS starts between May 6 and June 1. From March 13, 2010 to August 31, 2010, comparisons of sea surface temperature (SST) and rainfall from AMSR-E with data from a buoy located at Xisha Islands, as well as wind measurements derived from ASCAT and observations from an automatic weather station show that QuikSCAT, ASCAT and AMSR-E data are good enough for research. It is feasible to optimize the usage of remote-sensing data if validated with in-situ measurements. Remarkable changes were observed in wind, barometric pressure, humidity, outgoing longwave radiation (OLR), air temperature, rainfall and SST during the monsoon onset. The eastward shift of western Pacific subtropical high and the southward movement of continental cold front preceded the monsoon onset in SCS. The starting dates of SCS summer monsoon indicated that the southwest monsoon starts in the Indochinese Peninsula and forms an eastward zonal belt, and then the belt bifurcates in the SCS, with one part moving northeastward into the tropical western North Pacific, and another southward into western Kalimantan. This largely determined the pattern of the SCS summer monsoon. Wavelet analysis of zonal wind and OLR at Xisha showed that intra-seasonal variability played an important role in the summer. This work improves the accuracy of the amplitude of intra-seasonal and synoptic variation obtained from remote-sensed data.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1967211,U1832112,and 11975191).
文摘The evolution of helium bubbles in purity Mo was investigated by in-situ transmission electron microscopy(TEM)during 30 keV He^(+)irradiation(at 673 K and 1173 K)and post-irradiation annealing(after 30 keV He^(+)irradiation with the fluence of 5.74×10^(16)He^(+)/cm^(2)at 673 K).Both He^(+)irradiation and subsequently annealing induced the initiation,aggregation,and growth of helium bubbles.Temperature had a significant effect on the initiation and evolution of helium bubbles.The higher the irradiation temperature was,the larger the bubble size at the same irradiation fluence would be.At 1173 K irradiation,helium bubbles nucleated and grew preferentially at grain boundaries and showed super large size,which would induce the formation of microcracks.At the same time,the geometry of helium bubbles changed from sphericity to polyhedron.The polyhedral bubbles preferred to grow in the shape bounded by{100}planes.After statistical analysis of the characteristic parameters of helium bubbles,the functions between the average size,number density of helium bubbles,swelling rate and irradiation damage were obtained.Meanwhile,an empirical formula for calculating the size of helium bubbles during the annealing was also provided.
基金supported by the National Natural Science Foundation of China (grants No.41427803 amd 41272316)
文摘Objective In geo-marine science,the generalized bottom boundary layer(BBL)represents a layer between sediments and seawater.The BBL plays an important role in geological,geobiochemical,geophysical and geotechnical research because it is the connection region of hydrosphere,
文摘The motion of intervariant intedeces under the action of applied stress in the internally faulted 18R martensite in a Cu-Zn-Al shape memory alloy has been studied. Transmission electron microscopy in situ observations show that the interfaces between 24 martensite variants have different reaction to applied stress. The A/C type and A/B type interfaces have good mobil-ity, the A/D type interface has bad mobiIity, and the different-group-intervariant interfaces are basically immobile.
基金supported by the Shanghai Municipal People’s Government
文摘The Educational Adaptive-optics Solar Telescope(EAST)at the Shanghai Astronomy Museum has been running routine astronomical observations since 2021.It is a 65-cm-aperture Gregorian solar telescope for scientific education,outreach,and research.The telescope system is designed in an“open”format so that the solar tower architecture can be integrated with it,and visitors can watch the observations live from inside the tower.Equipped with adaptive optics,a high-resolution imaging system,and an integral field unit spectro-imaging system,this telescope can obtain high-resolution solar images in the TiO and Hαbands,and perform spectral image reconstruction using 400 optical fibers at selected wavelengths.It can be used not only in public education and scientific outreach but also in solar physics research.
文摘An in situ observation of the s'phase morphology and its orientation with the matrix in an Al-Li base alloy was carried out by means of double-tilt rotating around[220]a in a transmission electron microscope(TEM).The results show that the s'phase precipitates in the form of bundles.The units of s'phase are lath-shaped,grow along the<100>,orientation,and have habit planes of{210}*.Many units of the s'phase grow in the same orientation and get together to form a plate-shaped bundle of s'phase laths which lie on the{110}a planes.
基金Shougang Research Institute of Technology for the financial support to this project
文摘In-situ observation of microstructural evolution during heating and soaking process was carded out for a high nickel steel using HTCLSM. Dark phases were observed when soaking at 900℃. Results showed that the number of the dark phases culminated in about 50 s during soaking at 900℃. With the increase of soaking time the area proportion of the dark phases increased and reached the maximum value in about 3 min, When temperature rose from 900 ℃, the dark phases remained steady initially, but started to dissolve into the matrix at about 1 060 ℃ and completely disappeared at 1 132℃. When the specimen soaked at 900 ℃ was cooled down to room temperature (RT), the dark phases kept stable. Energy spectrum analysis results showed that the dark phases contained much more Cr and Mn elements than the matrix and,were also rich in V. Tensile test results showed that the dark phase strengthened the steel with the maximum tensile strength obtained after soaking at 900 ℃ for 3 minutes.