Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-...Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear Schr?dinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transformation, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion(GVD) and fourth-order dispersion(FOD) coefficients are the constants, we exhibit the first-and second-order vector semirational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we respectively present the first-and second-order periodic vector semi-rational rogue waves, first-and second-order asymmetry vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.展开更多
A fibre laser at 1111.6 nm is frequency doubled by two inhomogeneous MgO:LiNbO3 waveguides and the output powers of 85 mW and 49 mW at 555.8 nm have been generated with the conversion efficiencies of 47% and 27% resp...A fibre laser at 1111.6 nm is frequency doubled by two inhomogeneous MgO:LiNbO3 waveguides and the output powers of 85 mW and 49 mW at 555.8 nm have been generated with the conversion efficiencies of 47% and 27% respectively. By analysing the second harmonic generation temperature tuning curves, we investigate the influence of the optical inhomogeneities upon the conversion efficiency. The final result shows that the efficiency difference is mainly affected by the optical inhomogeneities in our case.展开更多
Dark solitons in the inhomogeneous optical fiber are studied in this manuscript via a higher-order nonlinear Schr?dinger equation,since dark solitons can be applied in waveguide optics as dynamic switches and junction...Dark solitons in the inhomogeneous optical fiber are studied in this manuscript via a higher-order nonlinear Schr?dinger equation,since dark solitons can be applied in waveguide optics as dynamic switches and junctions or optical logic devices.Based on the Lax pair,the binary Darboux transformation is constructed under certain constraints,thus the multi-dark soliton solutions are presented.Soliton propagation and collision are graphically discussed with the group-velocity dispersion,third-and fourth-order dispersions,which can affect the solitons’velocities but have no effect on the shapes.Elastic collisions between the two dark solitons and among the three dark solitons are displayed,while the elasticity cannot be influenced by the above three coefficients.展开更多
The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere ...The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere has been performed. It has been found that the dependence of the scintillation index at the axis of the optical vortex on the turbulence intensity at the path has the form of a unit step. It has been shown that the behavior of scintillations in the cross sections of vortex and nonvortex beams differs widely. Despite the scintillation index of vortex beams has been calculated only for the simplest LG10 mode, the obtained results are quite general, because they demonstrate the main properties inherent in scintillations of vortex beams of any type.展开更多
基金Project supported by the BUPT Excellent Ph.D.Students Foundation(Grant No.CX2019201)the National Natural Science Foundation of China(Grant Nos.11772017 and 11805020)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(Beijing University of Posts and Telecommunications),China(Grant No.IPOC:2017ZZ05)the Fundamental Research Funds for the Central Universities of China(Grant No.2011BUPTYB02)。
文摘Optical fibers are seen in the optical sensing and optical fiber communication. Simultaneous propagation of optical pulses in an inhomogeneous optical fiber is described by a coupled time-dependent coefficient fourth-order nonlinear Schr?dinger system, which is discussed in this paper. For such a system, we work out the Lax pair, Darboux transformation, and corresponding vector semi-rational nonautonomous rogue wave solutions. When the group velocity dispersion(GVD) and fourth-order dispersion(FOD) coefficients are the constants, we exhibit the first-and second-order vector semirational rogue waves which are composed of the four-petalled rogue waves and eye-shaped breathers. Both the width of the rogue wave along the time axis and temporal separation between the adjacent peaks of the breather decrease with the GVD coefficient or FOD coefficient. With the GVD and FOD coefficients as the linear, cosine, and exponential functions, we respectively present the first-and second-order periodic vector semi-rational rogue waves, first-and second-order asymmetry vector semi-rational rogue waves, and interactions between the eye-shaped breathers and the composite rogue waves.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774044)the National Key Basic Research and Development Program of China (Grant No. 2010CB922903)+1 种基金the Shanghai Pujiang Talent Program of China (Grant No. 07PJ14038)the Ph D Program Scholarship Fund of East China Normal University 2009 (Grant No. 2009049)
文摘A fibre laser at 1111.6 nm is frequency doubled by two inhomogeneous MgO:LiNbO3 waveguides and the output powers of 85 mW and 49 mW at 555.8 nm have been generated with the conversion efficiencies of 47% and 27% respectively. By analysing the second harmonic generation temperature tuning curves, we investigate the influence of the optical inhomogeneities upon the conversion efficiency. The final result shows that the efficiency difference is mainly affected by the optical inhomogeneities in our case.
基金supported by the National Natural Science Foundation of China under grant no.11905061by the Fundamental Research Funds for the Central Universities(No.9161718004)。
文摘Dark solitons in the inhomogeneous optical fiber are studied in this manuscript via a higher-order nonlinear Schr?dinger equation,since dark solitons can be applied in waveguide optics as dynamic switches and junctions or optical logic devices.Based on the Lax pair,the binary Darboux transformation is constructed under certain constraints,thus the multi-dark soliton solutions are presented.Soliton propagation and collision are graphically discussed with the group-velocity dispersion,third-and fourth-order dispersions,which can affect the solitons’velocities but have no effect on the shapes.Elastic collisions between the two dark solitons and among the three dark solitons are displayed,while the elasticity cannot be influenced by the above three coefficients.
基金supported in part by the Division of Physical Sciences of RAS “Fundamental Problems of Photonics and Physics of New Optical Materials.”
文摘The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere has been performed. It has been found that the dependence of the scintillation index at the axis of the optical vortex on the turbulence intensity at the path has the form of a unit step. It has been shown that the behavior of scintillations in the cross sections of vortex and nonvortex beams differs widely. Despite the scintillation index of vortex beams has been calculated only for the simplest LG10 mode, the obtained results are quite general, because they demonstrate the main properties inherent in scintillations of vortex beams of any type.