With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a...With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a suitable replacement for Faulhaber Precistep stepper motors.However,the small electrical time constant of such coreless motors poses a challenge,as the problem of severe commutation torque ripple in a fiber positioner running a position loop has been tricky.To overcome this challenge,it is advised to increase the Pulse Width Modulation(PWM)frequency as much as possible to mitigate the effects of the current fluctuation.This must be done while ensuring adequate resolution of the PWM generator.By employing a voltage open-loop field-oriented control based on a modulation frequency of 1 MHz,the drive current only costs 25 m A under a 3.3 V power supply.The sine degree of phase current is immaculate,and the repeat positioning accuracy can reach 2μm.Moreover,it is possible to further shrink the bill of devices and the layout area of the Printed Circuit Board,especially in sizesensitive applications.This device has been developed under the new generation of The Large Sky Area MultiObject Fiber Spectroscopic Telescope.展开更多
Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, ...Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation(BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dy-namically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.展开更多
A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An ...A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.展开更多
An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure ...An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level.展开更多
The measurement theorem of fiber optically driven instrument for high-voltage line current is presented. The PLL voltage-frequency-narrow pulse principle and its micro-consumption mechanism are proposed, followed by a...The measurement theorem of fiber optically driven instrument for high-voltage line current is presented. The PLL voltage-frequency-narrow pulse principle and its micro-consumption mechanism are proposed, followed by analysis on the two main factors affecting PLL measurement precision. A software design scheme using 80C196KB micro-controller is introduced. The experiment result is satisfactory.展开更多
New tungsten ion source is produced by using single and double-pulse laser ablation system. Combined collinear Nd:YAG laser beams(266+1064 nm) are optimized to focus on the sample in air. Optimization of the exper...New tungsten ion source is produced by using single and double-pulse laser ablation system. Combined collinear Nd:YAG laser beams(266+1064 nm) are optimized to focus on the sample in air. Optimization of the experimental parameters is achieved to enhance the signal-to-noise ratio of the emission spectra. The velocity distribution of the emitted plasma cloud is carefully measured. The influences of the potential difference between the bias electrodes, laser wavelength and intensity on the current signal are also studied. The results show that the increase in the tungsten ion velocity under the double-pulse lasers causes the output current signal to increase by about three folds. The electron density and temperature are calculated by using the Stark-broadened line profile of tungsten line and Boltzmann plot method of the upper energy levels, respectively. The signal intensity dependence of the tungsten ion angular distribution is also analyzed. The results indicate that the double-pulse laser ablation configuration is more potent technique for producing more metal ion source deposition, thin film formation, and activated plasma-facing component material.展开更多
The New Vacuum Solar Telescope (NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including me...The New Vacuum Solar Telescope (NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including measurements of the solar magnetic field. NVST is the primary ground-based facility used by the Chinese solar research community in this solar cycle. It is located by Fuxian Lake in southwest China, where the seeing is good enough to perform high resolution observations. We first introduce the general conditions at the Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of the solar photosphere and chromosphere are also shown.展开更多
An accurate phase shift extraction method for generalized phase-shifting interferometry is suggested. Based on the nearly random phase distribution of the diffraction field of the object, a singular formula is derived...An accurate phase shift extraction method for generalized phase-shifting interferometry is suggested. Based on the nearly random phase distribution of the diffraction field of the object, a singular formula is derived to calculate the unknown phase shift without the requirements of an iteration process or the selection of the correct value from two or more possible phase shift solutions as needed before. This method can be used in the cases of two or more frames with both smooth and diffusing object surfaces. Computer simulations and optical experiments have satisfactorily verified the efficiency and accuracy of this method.展开更多
The portable adaptive optics(PAO)device is a low-cost and compact system,designed for 4-meter class telescopes that have no adaptive optics(AO)system,because of the physical space limitation at the Nasmyth or Cassegra...The portable adaptive optics(PAO)device is a low-cost and compact system,designed for 4-meter class telescopes that have no adaptive optics(AO)system,because of the physical space limitation at the Nasmyth or Cassegrain focus and the historically high cost of conventional AO.The initial scientific observations of the PAO are focused on the direct imaging of exoplanets and sub-stellar companions.This paper discusses the concept of PAO and the associated high-contrast imaging performance in our recent observational runs.PAO deliver a Strehl ratio better than 60%in H band under median seeing conditions of 1".Combined with our dedicated image rotation and subtraction(IRS)technique and the optimized IRS(O-IRS)algorithm,the averaged contrast ratio for a 5≤V_(mag)≤9 primary star is 1.3×10^(-5)and3.3×10^(-6)at angular distance of 0.36"with exposure time of 7 minutes and 2 hours,respectively.PAO has successfully revealed the known exoplanet ofκAnd b in our recent observation with the 3.5-meter ARC telescope at Apache Point Observatory.We have performed the associated astrometry and photometry analysis of the recoveredκAnd b planet,which gives a projected separation of 0.98"±0.05",a position angle of 51.1°±0.5°and a mass of 10.15_(-1.255)^(+2.19) MJup.These results demonstrate that PAO can be used for direct imaging of exoplanets with medium-sized telescopes.展开更多
Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is one of the major national projects under construction in China. Active optics is one of the most important technologies for new large telescopes. I...Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is one of the major national projects under construction in China. Active optics is one of the most important technologies for new large telescopes. It is used for correcting telescope errors generated by gravitational and thermal changes. Here, however, we use this technology to realize the configuration of LAMOST,—a task that cannot be done in the traditional way. A comprehensive and intensive research on the active optics used in LAMOST is also reported, including an open-loop control method and an auxiliary closed-loop control method. Another important development is in our pre-calibration method of open-loop control, which is with some new features: simultaneous calculation of the forces and displacements of force actuators and displacement actuators; the profile of mirror can be arbitrary; the mirror surface shape is not expressed by a fitting polynomial, but is derived from the mirror surface shape formula which is highly accurate; a proof is given that the solution of the pre-calibration method is the same as the least squares solution.展开更多
An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve t...An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartrnann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at an angular distance of 2A/D after being corrected by SPGD based AO.展开更多
A mobile molecular Doppler wind lidar (DWL) based on double-edge technique is presented for wind measurement at altitudes from 10 km to 40 km. A triple Fabry-Perot etalon is employed as a frequency discriminator to ...A mobile molecular Doppler wind lidar (DWL) based on double-edge technique is presented for wind measurement at altitudes from 10 km to 40 km. A triple Fabry-Perot etalon is employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity. The lidar operates at 355 nm with a 45-cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing. In order to guarantee the wind accuracy, different forms of calibration function of detectors in different count rates response range would be especially valuable. The accuracy of wind velocity iteration is improved greatly because of application of the calibration function of linearity at the ultra low light intensity especially at altitudes from 10 km to 40 km. The calibration functions of nonlinearity make the transmission of edge channel 1 and edge channel 2 increase 38.9% and 27.7% at about 1 M count rates, respectively. The dynamic range of wind field measurement may also be extended because of consideration of the response function of detectors in their all possible operating range.展开更多
An atmospheric turbulence phase screen generated using a fractal method is introduced. It is etched onto fused silica and tested in the laboratory. The etched screen has relatively low cost, high resolution, and can b...An atmospheric turbulence phase screen generated using a fractal method is introduced. It is etched onto fused silica and tested in the laboratory. The etched screen has relatively low cost, high resolution, and can be used in the broad waveband under severe temperature conditions. Our results are shown to agree well with the theory.展开更多
A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium l...A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium laser, (2) a 300-millimeter-diameter laser launch telescope, and (3) a 37-element com- pact adaptive optics system. On 2014 January 25, we obtained high resolution images of an my 8.18 star, HIP 43963, during the first light of the LGS-AOS. In this paper, the sodium laser, the laser launch telescope, the compact adaptive optics system and the first light results will be presented.展开更多
A simple and effective way to measure the group velocity ofphotonic crystal waveguides (PCWGs) is developed by using a fiber Mach-Zehnder interferometer. A PCWG with perfect air-bridge structure is fabricated and sl...A simple and effective way to measure the group velocity ofphotonic crystal waveguides (PCWGs) is developed by using a fiber Mach-Zehnder interferometer. A PCWG with perfect air-bridge structure is fabricated and slow light with group velocity slower than c/80 is demonstrated.展开更多
Adaptive optics (AO), which provides diffraction limited imaging over a field-of-view (FOV), is a powerful technique for solar observation. In the tomographic approach, each wavefront sensor (WFS) is looking at ...Adaptive optics (AO), which provides diffraction limited imaging over a field-of-view (FOV), is a powerful technique for solar observation. In the tomographic approach, each wavefront sensor (WFS) is looking at a single reference that acts as a guide star. This allows a 3D reconstruction of the distorted wavefront to be made. The correction is applied by one or more deformable mirrors (DMs). This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. With the assistance of the MAOS software package, we consider the tomography errors and WFS aliasing errors, and focus on how the performance of a solar telescope (pointing toward zenith) is related to atmospheric anisoplanatism. We theoretically quantify the performance of the to- mographic solar AO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope in a 10" - 80" diameter FOV by only employing one DM conjugated to the telescope pupil. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the AO system by selecting two atmospheric models that differ mainly in terms of atmospheric prop- erties at ground level, and present the optimum DM conjugate altitudes for different observation sites.展开更多
Multi-conjugate adaptive optics (MCAO) can considerably extend the cor- rected field of view with respect to classical adaptive optics, which will benefit solar observation in many aspects. In solar MCAO, the Sun st...Multi-conjugate adaptive optics (MCAO) can considerably extend the cor- rected field of view with respect to classical adaptive optics, which will benefit solar observation in many aspects. In solar MCAO, the Sun structure is utilized to provide multiple guide stars and a modal tomography approach is adopted to implement three- dimensional wavefront restorations. The principle of modal tomography is briefly re- viewed and a numerical simulation model is built with three equivalent turbulent lay- ers and a different number of guide stars. Our simulation results show that at least six guide stars are required for an accurate wavefront reconstruction in the case of three layers, and only three guide stars are needed in the two layer case. Finally, eigen- mode analysis results are given to reveal the singular modes that cannot be precisely retrieved in the tomography process.展开更多
文摘With the development of cutting-edge multi-object spectrographs,fiber positioners located in the focal plane are being scaled down in size,and miniature hollow-cup Permanent Magnet motors are now being considered as a suitable replacement for Faulhaber Precistep stepper motors.However,the small electrical time constant of such coreless motors poses a challenge,as the problem of severe commutation torque ripple in a fiber positioner running a position loop has been tricky.To overcome this challenge,it is advised to increase the Pulse Width Modulation(PWM)frequency as much as possible to mitigate the effects of the current fluctuation.This must be done while ensuring adequate resolution of the PWM generator.By employing a voltage open-loop field-oriented control based on a modulation frequency of 1 MHz,the drive current only costs 25 m A under a 3.3 V power supply.The sine degree of phase current is immaculate,and the repeat positioning accuracy can reach 2μm.Moreover,it is possible to further shrink the bill of devices and the layout area of the Printed Circuit Board,especially in sizesensitive applications.This device has been developed under the new generation of The Large Sky Area MultiObject Fiber Spectroscopic Telescope.
文摘Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation(BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dy-namically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.
基金Supported by the National Natural Science Foundation of China
文摘A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.
基金Supported by grants from by the Natural Science Foundation of China under Grant Nos 10732080, 10627201 and 10872191, and the National Basic Research Program of China under Grant No 2006CB300404.
文摘An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level.
基金NationalNaturalScienceFoundationofChina (No .6 974 80 0 1) KeySubjectSpecialFoundationofMechanicalBureau
文摘The measurement theorem of fiber optically driven instrument for high-voltage line current is presented. The PLL voltage-frequency-narrow pulse principle and its micro-consumption mechanism are proposed, followed by analysis on the two main factors affecting PLL measurement precision. A software design scheme using 80C196KB micro-controller is introduced. The experiment result is satisfactory.
文摘New tungsten ion source is produced by using single and double-pulse laser ablation system. Combined collinear Nd:YAG laser beams(266+1064 nm) are optimized to focus on the sample in air. Optimization of the experimental parameters is achieved to enhance the signal-to-noise ratio of the emission spectra. The velocity distribution of the emitted plasma cloud is carefully measured. The influences of the potential difference between the bias electrodes, laser wavelength and intensity on the current signal are also studied. The results show that the increase in the tungsten ion velocity under the double-pulse lasers causes the output current signal to increase by about three folds. The electron density and temperature are calculated by using the Stark-broadened line profile of tungsten line and Boltzmann plot method of the upper energy levels, respectively. The signal intensity dependence of the tungsten ion angular distribution is also analyzed. The results indicate that the double-pulse laser ablation configuration is more potent technique for producing more metal ion source deposition, thin film formation, and activated plasma-facing component material.
基金Supported by the National Natural Science Foundation of China
文摘The New Vacuum Solar Telescope (NVST) is a one meter vacuum solar telescope that aims to observe fine structures on the Sun. The main goals of NVST are high resolution imaging and spectral observations, including measurements of the solar magnetic field. NVST is the primary ground-based facility used by the Chinese solar research community in this solar cycle. It is located by Fuxian Lake in southwest China, where the seeing is good enough to perform high resolution observations. We first introduce the general conditions at the Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of the solar photosphere and chromosphere are also shown.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60977006, 60777008 and 40704021, and the Fund from China University of Petroleum (East China) under Grant No Y081818.
文摘An accurate phase shift extraction method for generalized phase-shifting interferometry is suggested. Based on the nearly random phase distribution of the diffraction field of the object, a singular formula is derived to calculate the unknown phase shift without the requirements of an iteration process or the selection of the correct value from two or more possible phase shift solutions as needed before. This method can be used in the cases of two or more frames with both smooth and diffusing object surfaces. Computer simulations and optical experiments have satisfactorily verified the efficiency and accuracy of this method.
基金supported by the National Natural Science Foundation of China(Grant Nos.11827804,U2031210)。
文摘The portable adaptive optics(PAO)device is a low-cost and compact system,designed for 4-meter class telescopes that have no adaptive optics(AO)system,because of the physical space limitation at the Nasmyth or Cassegrain focus and the historically high cost of conventional AO.The initial scientific observations of the PAO are focused on the direct imaging of exoplanets and sub-stellar companions.This paper discusses the concept of PAO and the associated high-contrast imaging performance in our recent observational runs.PAO deliver a Strehl ratio better than 60%in H band under median seeing conditions of 1".Combined with our dedicated image rotation and subtraction(IRS)technique and the optimized IRS(O-IRS)algorithm,the averaged contrast ratio for a 5≤V_(mag)≤9 primary star is 1.3×10^(-5)and3.3×10^(-6)at angular distance of 0.36"with exposure time of 7 minutes and 2 hours,respectively.PAO has successfully revealed the known exoplanet ofκAnd b in our recent observation with the 3.5-meter ARC telescope at Apache Point Observatory.We have performed the associated astrometry and photometry analysis of the recoveredκAnd b planet,which gives a projected separation of 0.98"±0.05",a position angle of 51.1°±0.5°and a mass of 10.15_(-1.255)^(+2.19) MJup.These results demonstrate that PAO can be used for direct imaging of exoplanets with medium-sized telescopes.
文摘Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) is one of the major national projects under construction in China. Active optics is one of the most important technologies for new large telescopes. It is used for correcting telescope errors generated by gravitational and thermal changes. Here, however, we use this technology to realize the configuration of LAMOST,—a task that cannot be done in the traditional way. A comprehensive and intensive research on the active optics used in LAMOST is also reported, including an open-loop control method and an auxiliary closed-loop control method. Another important development is in our pre-calibration method of open-loop control, which is with some new features: simultaneous calculation of the forces and displacements of force actuators and displacement actuators; the profile of mirror can be arbitrary; the mirror surface shape is not expressed by a fitting polynomial, but is derived from the mirror surface shape formula which is highly accurate; a proof is given that the solution of the pre-calibration method is the same as the least squares solution.
基金Supported by the National Natural Science Foundation of China(Grant Nos. 10873024 and 11003031)supported by the National Science Foundation under Grant ATM-0841440
文摘An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartrnann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10^-3 to 10^-4.5 at an angular distance of 2A/D after being corrected by SPGD based AO.
文摘A mobile molecular Doppler wind lidar (DWL) based on double-edge technique is presented for wind measurement at altitudes from 10 km to 40 km. A triple Fabry-Perot etalon is employed as a frequency discriminator to determine the Doppler shift proportional to the wind velocity. The lidar operates at 355 nm with a 45-cm aperture telescope and a matching azimuth-over-elevation scanner that can provide full hemispherical pointing. In order to guarantee the wind accuracy, different forms of calibration function of detectors in different count rates response range would be especially valuable. The accuracy of wind velocity iteration is improved greatly because of application of the calibration function of linearity at the ultra low light intensity especially at altitudes from 10 km to 40 km. The calibration functions of nonlinearity make the transmission of edge channel 1 and edge channel 2 increase 38.9% and 27.7% at about 1 M count rates, respectively. The dynamic range of wind field measurement may also be extended because of consideration of the response function of detectors in their all possible operating range.
基金supported by the dedicated operation funding forastronomical observation stations and facilities from the Chinese Academy of Sciences
文摘An atmospheric turbulence phase screen generated using a fractal method is introduced. It is etched onto fused silica and tested in the laboratory. The etched screen has relatively low cost, high resolution, and can be used in the broad waveband under severe temperature conditions. Our results are shown to agree well with the theory.
基金supported by the Creative Foundation of the Chinese Academy of Sciences,China
文摘A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium laser, (2) a 300-millimeter-diameter laser launch telescope, and (3) a 37-element com- pact adaptive optics system. On 2014 January 25, we obtained high resolution images of an my 8.18 star, HIP 43963, during the first light of the LGS-AOS. In this paper, the sodium laser, the laser launch telescope, the compact adaptive optics system and the first light results will be presented.
基金Supported by the National Natural Science Foundation of China under Grant No 60537010, and the National Basic Research Program of China under Grant Nos 2007CB307004 and 2006CB302804.
文摘A simple and effective way to measure the group velocity ofphotonic crystal waveguides (PCWGs) is developed by using a fiber Mach-Zehnder interferometer. A PCWG with perfect air-bridge structure is fabricated and slow light with group velocity slower than c/80 is demonstrated.
基金The China Scholarship Council Foundation is acknowledged for funding this research
文摘Adaptive optics (AO), which provides diffraction limited imaging over a field-of-view (FOV), is a powerful technique for solar observation. In the tomographic approach, each wavefront sensor (WFS) is looking at a single reference that acts as a guide star. This allows a 3D reconstruction of the distorted wavefront to be made. The correction is applied by one or more deformable mirrors (DMs). This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. With the assistance of the MAOS software package, we consider the tomography errors and WFS aliasing errors, and focus on how the performance of a solar telescope (pointing toward zenith) is related to atmospheric anisoplanatism. We theoretically quantify the performance of the to- mographic solar AO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope in a 10" - 80" diameter FOV by only employing one DM conjugated to the telescope pupil. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the AO system by selecting two atmospheric models that differ mainly in terms of atmospheric prop- erties at ground level, and present the optimum DM conjugate altitudes for different observation sites.
文摘Multi-conjugate adaptive optics (MCAO) can considerably extend the cor- rected field of view with respect to classical adaptive optics, which will benefit solar observation in many aspects. In solar MCAO, the Sun structure is utilized to provide multiple guide stars and a modal tomography approach is adopted to implement three- dimensional wavefront restorations. The principle of modal tomography is briefly re- viewed and a numerical simulation model is built with three equivalent turbulent lay- ers and a different number of guide stars. Our simulation results show that at least six guide stars are required for an accurate wavefront reconstruction in the case of three layers, and only three guide stars are needed in the two layer case. Finally, eigen- mode analysis results are given to reveal the singular modes that cannot be precisely retrieved in the tomography process.