Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, ...Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation(BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dy-namically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.展开更多
We present a simple method to measure the topological charges of optical vortices with multiple singularities. Using a cylindrical lens, a vortex beam can decay into a light field distribution with multiple separated ...We present a simple method to measure the topological charges of optical vortices with multiple singularities. Using a cylindrical lens, a vortex beam can decay into a light field distribution with multiple separated dark holes, whose number just equals the topological charge of the input beam. This conclusion is then verified via experiments and numerical simulations of the propagation of vortex beams with multiple singulaxities. This method is also reliable to measure the topological charges of broadband vortex beams with different distributions of singularities, which does not resort to multiple beam interferometrie experiments.展开更多
Subpixel localization techniques for estimating the positions of point-like images captured by pixelated image sensors have been widely used in diverse optical measurement fields.With unavoidable imaging noise,there i...Subpixel localization techniques for estimating the positions of point-like images captured by pixelated image sensors have been widely used in diverse optical measurement fields.With unavoidable imaging noise,there is a precision limit(PL)when estimating the target positions on image sensors,which depends on the detected photon count,noise,point spread function(PSF)radius,and PSF’s intra-pixel position.Previous studies have clearly reported the effects of the first three parameters on the PL but have neglected the intra-pixel position information.Here,we develop a localization PL analysis framework for revealing the effect of the intra-pixel position of small PSFs.To accurately estimate the PL in practical applications,we provide effective PSF(e PSF)modeling approaches and apply the Cramér–Rao lower bound.Based on the characteristics of small PSFs,we first derive simplified equations for finding the best PL and the best intra-pixel region for an arbitrary small PSF;we then verify these equations on real PSFs.Next,we use the typical Gaussian PSF to perform a further analysis and find that the final optimum of the PL is achieved at the pixel boundaries when the Gaussian radius is as small as possible,indicating that the optimum is ultimately limited by light diffraction.Finally,we apply the maximum likelihood method.Its combination with e PSF modeling allows us to successfully reach the PL in experiments,making the above theoretical analysis effective.This work provides a new perspective on combining image sensor position control with PSF engineering to make full use of information theory,thereby paving the way for thoroughly understanding and achieving the final optimum of the PL in optical localization.展开更多
Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states...Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states and quadrature-amplitude squeezed vacuum states were obtained using one setup respectively.A quantum-enhanced fiber Mach–Zehnder interferometer(FMZI)was demonstrated for low-frequency phase measurement using the generated quadrature-phase squeezed vacuum states that were injected.When phase modulation was measured with the quantumenhanced FMZI,there were above 3 dB quantum improvements beyond the shot-noise limit(SNL)from 40 kHz to 200 kHz,and 2.3 dB quantum improvement beyond the SNL at 20 kHz was obtained.The generated quadrature-amplitude squeezed vacuum state was applied to perform low-frequency amplitude modulation measurement for sensitivity beyond the SNL based on optical fiber construction.There were about 2 dB quantum improvements beyond the SNL from 60 kHz to 200 kHz.The current scheme proves that quantum-enhanced fiber-based sensors are feasible and have potential applications in high-precision measurements based on fiber,particularly in the low-frequency range.展开更多
Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently.Therefore,any optical frequency in visible to near-infrared region can be directly traced to a microwave fr...Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently.Therefore,any optical frequency in visible to near-infrared region can be directly traced to a microwave frequency.As a result,the length unit“meter”is directly related to the time unit“second”.This paper validates the capability of the national wavelength standards based on a home-made Er-doped fiber femtosecond optical frequency comb to measure the laser frequencies ranging from visible to near-infrared region.Optical frequency conversion in the femtosecond optical frequency comb is achieved by combining spectral broadening in a highly nonlinear fiber with a single-point frequencydoubling scheme.The signal-to-noise ratio of the beat notes between the femtosecond optical frequency comb and the lasers at 633,698,729,780,1064,and 1542 nm is better than 30 d B.The frequency instability of the above lasers is evaluated by using a hydrogen clock signal with a instability of better than 1×10^(-13)at 1-s averaging time.The measurement is further validated by measuring the absolute optical frequency of an iodine-stabilized 532-nm laser and an acetylenestabilized 1542-nm laser.The results are within the uncertainty range of the international recommended values.Our results demonstrate the accurate optical frequency measurement of lasers at different frequencies using the femtosecond optical frequency comb,which is not only important for the precise and accurate traceability and calibration of the laser frequencies,but also provides technical support for establishing the national wavelength standards based on the femtosecond optical frequency comb.展开更多
The Cr^3+:BeAl2O4 crystal, Cr^3+:LiNbO3 crystal, and ZnO-Al2O3-SiO2 glass-ceramic were obtained by the Czochralski technique, Bridgman method, and melting processing, respectively. The optical absorption and emiss...The Cr^3+:BeAl2O4 crystal, Cr^3+:LiNbO3 crystal, and ZnO-Al2O3-SiO2 glass-ceramic were obtained by the Czochralski technique, Bridgman method, and melting processing, respectively. The optical absorption and emission spectra of the above Cr^3+-incorporated solid-state materials were recorded. The technical parameters for growing high-quality Cr^3+:BeAl2O4 and Cr^3+:LINbO3 crystals were obtained. The results indicate that the optical absorption and fluorescence spectra of Cr^3+ show quite a few differences in various matrixes. The sharp line emissions were observed in the Cr^3+:BeAl2O4 and Cr^3+:LiNbO3 crystals. The crystal-field parameters (Dq) for Cr^3+. in different matrixes were calculated from their corresponding spectra. It is indicated that Cr^3+:BeAl2O4 and Cr^3+:LiNbO3 belong to the high-field site crystal, while the Cr^3+ ZnO-Al2O3-SiO2 glass and glass-ceramic belong to the weak-field site crystal.展开更多
An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure it...An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-kin-long fiber. reference frequency of this H-maser, is used for the optical this Sr clock is measured to be 429228004229873.7(1.4)Hz. A fiber optical frequency comb, phase-locked to the frequency measurement. The absolute frequency of展开更多
The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is abl...The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is able to automatically recognize any position between depression and elevation on an object surface.Theoretical analysis and experimental verification are presented.展开更多
An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure ...An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level.展开更多
This article reviews the instrumental developments accomplished at ONERA in order to perform precise non-intrusive measurements of hypersonic flows using laser- and electron-beam-based optical techniques. Point line o...This article reviews the instrumental developments accomplished at ONERA in order to perform precise non-intrusive measurements of hypersonic flows using laser- and electron-beam-based optical techniques. Point line of sight and imaging measurements are possible. Point measurements have been implemented with Electron Beam Fluorescence (EBF) using detection of X-ray radiation and Coherent anti-Stokes Raman Scattering (CARS). When spatial resolution is not required, diode laser absorption spectroscopy yields results integrated along a line. EBF imaging using a high energy pulsed electron gun is also quite promising. Rotational and vibrational populations of nitrogen and nitric oxide have been measured in various hypersonic hyperenthalpic facilities, as well as rotational state-resolved velocities in shocks and boundary layers.展开更多
Our recent article (Chin. Phys. Lett. 35 (2018)083201) measured the Zeeman shift of cesium atoms using an optical nanofiber. Before our work, Watkins et al.(Ref.[17] in our article) had demonstrated the Zeeman shift a...Our recent article (Chin. Phys. Lett. 35 (2018)083201) measured the Zeeman shift of cesium atoms using an optical nanofiber. Before our work, Watkins et al.(Ref.[17] in our article) had demonstrated the Zeeman shift also using an optical nanofiber in rubidium atoms. Watkins et al. reported on the observation展开更多
We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluat...We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i^formation processing and communication.展开更多
In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that ...In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given. Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism, the origin of which is analysed. Furthermore, to avoid phase unwrapping in the phase reconstruction, we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions. The reconstructed phase can be obtained directly by performing numerical integration, and thus it is of great convenience for phase reconstruction. Finally, the results of numerical simulations and practical experiments verify the correctness of the proposed method.展开更多
Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as pre...Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as precision mechanics and manufacturing, aerospace and automotive testing and inspection, materials science, and biomedical engineering. Advances in Optical Techniques for Me- chanical Measurements presents the latest research progresses in several widely used optical techniques with applications in preci- sion mechanical engineering.展开更多
In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical r...In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical reflected pulses are obtained from a single nanosecond pulse injected at the input due to the difference in lengths of the reference and test fibers. The lengths of the different optical fibers have been measured with this technique with high resolution and fast response time. The measured results show that, the proposed technique has a comparable performance with the well-known length measurement systems.展开更多
Nanofibers have many promising applications because of their advantages of high power density and ultralow saturated light intensity. We present here a Zeeman shift of the Doppler-broadened cesium D2 transition using ...Nanofibers have many promising applications because of their advantages of high power density and ultralow saturated light intensity. We present here a Zeeman shift of the Doppler-broadened cesium D2 transition using a tapered optical nanofiber in the presence of a magnetic field. When a weak magnetic field is parallel to the propagating light in the nanofiber, the Zeeman shift rates for different circularly polarized spectra are observed.For the +component, the typical linear Zeeman shift rates of = 3 and = 4 ground-state cesium atoms are measured to be 3.10(±0.19) MHz/G and 3.91(±0.16) MHz/G. For the -component, the values are measured to be-2.81(±0.25) MHz/G, and-0.78(±0.28) MHz/G. The Zeeman shift using the tapered nanofiber can help to develop magnetometers to measure the magnetic field at the narrow local region and the dispersive signal to lock laser frequency.展开更多
In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link pha...In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users.展开更多
A new error compensating five sample phase shifting algorithm which is insensitive to phase shift error is proposed to retrieve the phase distribution of a fringe pattern. It includes two steps. First, the linear ...A new error compensating five sample phase shifting algorithm which is insensitive to phase shift error is proposed to retrieve the phase distribution of a fringe pattern. It includes two steps. First, the linear phase shift error is estimated using four sample images. Then, the phase distribution is calculated with error corrected by using the phase shift error estimated in the first step. As the equations of error estimation and phase calculation are simple, this new algorithm is practical as well as effective. Computer simulations were carried out to verify the effectiveness of the algorithm. Results of two other well known error compensating algorithms are also presented, which show the new algorithm is the least sensitive to phase shift error.展开更多
In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to c...In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to correct the cross-interferences among the target gases. The calculation of calibration curves is based on least-square fittings with third-order polynomials, and the interference functions are approximated by linear curves. The pure absorbance of each gas is obtained by solving three simultaneous equations using the fitted interference functions. Through the interference correction, the signal created at each filter channel only depends on the absorption of the intended gas. Gas mixture samples with different concentrations of CO2, CO, and NO are pumped into the sample cell for analysis. The results show that the measurement error of each gas is less than 4.5%.展开更多
An accurate phase shift extraction method for generalized phase-shifting interferometry is suggested. Based on the nearly random phase distribution of the diffraction field of the object, a singular formula is derived...An accurate phase shift extraction method for generalized phase-shifting interferometry is suggested. Based on the nearly random phase distribution of the diffraction field of the object, a singular formula is derived to calculate the unknown phase shift without the requirements of an iteration process or the selection of the correct value from two or more possible phase shift solutions as needed before. This method can be used in the cases of two or more frames with both smooth and diffusing object surfaces. Computer simulations and optical experiments have satisfactorily verified the efficiency and accuracy of this method.展开更多
文摘Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope(UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation(BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dy-namically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921900the National Natural Science Foundation of China under Grant Nos 61377035 and 11404264the Fundamental Research Funds for the Central Universities under Grant No 3102014JCQ01085
文摘We present a simple method to measure the topological charges of optical vortices with multiple singularities. Using a cylindrical lens, a vortex beam can decay into a light field distribution with multiple separated dark holes, whose number just equals the topological charge of the input beam. This conclusion is then verified via experiments and numerical simulations of the propagation of vortex beams with multiple singulaxities. This method is also reliable to measure the topological charges of broadband vortex beams with different distributions of singularities, which does not resort to multiple beam interferometrie experiments.
基金the support from the National Natural Science Foundation of China(51827806)the National Key Research and Development Program of China(2016YFB0501201)the Xplorer Prize funded by the Tencent Foundation。
文摘Subpixel localization techniques for estimating the positions of point-like images captured by pixelated image sensors have been widely used in diverse optical measurement fields.With unavoidable imaging noise,there is a precision limit(PL)when estimating the target positions on image sensors,which depends on the detected photon count,noise,point spread function(PSF)radius,and PSF’s intra-pixel position.Previous studies have clearly reported the effects of the first three parameters on the PL but have neglected the intra-pixel position information.Here,we develop a localization PL analysis framework for revealing the effect of the intra-pixel position of small PSFs.To accurately estimate the PL in practical applications,we provide effective PSF(e PSF)modeling approaches and apply the Cramér–Rao lower bound.Based on the characteristics of small PSFs,we first derive simplified equations for finding the best PL and the best intra-pixel region for an arbitrary small PSF;we then verify these equations on real PSFs.Next,we use the typical Gaussian PSF to perform a further analysis and find that the final optimum of the PL is achieved at the pixel boundaries when the Gaussian radius is as small as possible,indicating that the optimum is ultimately limited by light diffraction.Finally,we apply the maximum likelihood method.Its combination with e PSF modeling allows us to successfully reach the PL in experiments,making the above theoretical analysis effective.This work provides a new perspective on combining image sensor position control with PSF engineering to make full use of information theory,thereby paving the way for thoroughly understanding and achieving the final optimum of the PL in optical localization.
基金Project supported by the National Natural Science Foundation of China(Grant No.62175135)the Fundamental Research Program of Shanxi Province(Grant No.202103021224025)。
文摘Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states and quadrature-amplitude squeezed vacuum states were obtained using one setup respectively.A quantum-enhanced fiber Mach–Zehnder interferometer(FMZI)was demonstrated for low-frequency phase measurement using the generated quadrature-phase squeezed vacuum states that were injected.When phase modulation was measured with the quantumenhanced FMZI,there were above 3 dB quantum improvements beyond the shot-noise limit(SNL)from 40 kHz to 200 kHz,and 2.3 dB quantum improvement beyond the SNL at 20 kHz was obtained.The generated quadrature-amplitude squeezed vacuum state was applied to perform low-frequency amplitude modulation measurement for sensitivity beyond the SNL based on optical fiber construction.There were about 2 dB quantum improvements beyond the SNL from 60 kHz to 200 kHz.The current scheme proves that quantum-enhanced fiber-based sensors are feasible and have potential applications in high-precision measurements based on fiber,particularly in the low-frequency range.
基金the National Key Research and Development Program of China(Grant No.2016YFF0200204)。
文摘Femtosecond optical frequency combs correlate the microwave and optical frequencies accurately and coherently.Therefore,any optical frequency in visible to near-infrared region can be directly traced to a microwave frequency.As a result,the length unit“meter”is directly related to the time unit“second”.This paper validates the capability of the national wavelength standards based on a home-made Er-doped fiber femtosecond optical frequency comb to measure the laser frequencies ranging from visible to near-infrared region.Optical frequency conversion in the femtosecond optical frequency comb is achieved by combining spectral broadening in a highly nonlinear fiber with a single-point frequencydoubling scheme.The signal-to-noise ratio of the beat notes between the femtosecond optical frequency comb and the lasers at 633,698,729,780,1064,and 1542 nm is better than 30 d B.The frequency instability of the above lasers is evaluated by using a hydrogen clock signal with a instability of better than 1×10^(-13)at 1-s averaging time.The measurement is further validated by measuring the absolute optical frequency of an iodine-stabilized 532-nm laser and an acetylenestabilized 1542-nm laser.The results are within the uncertainty range of the international recommended values.Our results demonstrate the accurate optical frequency measurement of lasers at different frequencies using the femtosecond optical frequency comb,which is not only important for the precise and accurate traceability and calibration of the laser frequencies,but also provides technical support for establishing the national wavelength standards based on the femtosecond optical frequency comb.
基金This work is financially supported by the Project of Science and Technology of Zhejiang Province (No. 011066)Project of Education Committee of Zhejiang Province (No. 20010231)the Doctoral Science Foundation of Ningbo City (No. 02J20101-12)the Personal Bureau of Ningbo City, China (No. 2002182).
文摘The Cr^3+:BeAl2O4 crystal, Cr^3+:LiNbO3 crystal, and ZnO-Al2O3-SiO2 glass-ceramic were obtained by the Czochralski technique, Bridgman method, and melting processing, respectively. The optical absorption and emission spectra of the above Cr^3+-incorporated solid-state materials were recorded. The technical parameters for growing high-quality Cr^3+:BeAl2O4 and Cr^3+:LINbO3 crystals were obtained. The results indicate that the optical absorption and fluorescence spectra of Cr^3+ show quite a few differences in various matrixes. The sharp line emissions were observed in the Cr^3+:BeAl2O4 and Cr^3+:LiNbO3 crystals. The crystal-field parameters (Dq) for Cr^3+. in different matrixes were calculated from their corresponding spectra. It is indicated that Cr^3+:BeAl2O4 and Cr^3+:LiNbO3 belong to the high-field site crystal, while the Cr^3+ ZnO-Al2O3-SiO2 glass and glass-ceramic belong to the weak-field site crystal.
基金Supported by the National Natural Science Foundation of China under Grant Nos 91336212 and 91436104
文摘An optical lattice clock based on 87Sr is built at National Institute of Metrology (NIM) of China. The systematic frequency shifts of the clock are evaluated with a total uncertainty of 2.3×10-16. To measure its absolute frequency with respect to NIM's cesium fountain clock NIM5, the frequency of a flywheel H-maser of NIM5 is transferred to the Sr laboratory through a 50-kin-long fiber. reference frequency of this H-maser, is used for the optical this Sr clock is measured to be 429228004229873.7(1.4)Hz. A fiber optical frequency comb, phase-locked to the frequency measurement. The absolute frequency of
文摘The technique of phase measuring profilometry using a single phase step method is proposed.This method can automatically obtain phase value at each pixel by using a discret cosine transform algorithm.The method is able to automatically recognize any position between depression and elevation on an object surface.Theoretical analysis and experimental verification are presented.
基金Supported by grants from by the Natural Science Foundation of China under Grant Nos 10732080, 10627201 and 10872191, and the National Basic Research Program of China under Grant No 2006CB300404.
文摘An optical readout uncooled infrared detector, employing a substrate-free focal plane array with pitch size 60μm, is established. The reflector deformation induced by the stress mismatching of the bi-layer structure is discussed and, in turn, a universal solution to determine both the optical readout sensitivity and the optimal filter position is found. By applying this solution, the optical readout sensitivity for the ideal plane reflector could theoretically increase by 80% as compared with the conventional operation, and the sensitivity loss caused by the reflector deformation can also be reduced to a reasonable level.
文摘This article reviews the instrumental developments accomplished at ONERA in order to perform precise non-intrusive measurements of hypersonic flows using laser- and electron-beam-based optical techniques. Point line of sight and imaging measurements are possible. Point measurements have been implemented with Electron Beam Fluorescence (EBF) using detection of X-ray radiation and Coherent anti-Stokes Raman Scattering (CARS). When spatial resolution is not required, diode laser absorption spectroscopy yields results integrated along a line. EBF imaging using a high energy pulsed electron gun is also quite promising. Rotational and vibrational populations of nitrogen and nitric oxide have been measured in various hypersonic hyperenthalpic facilities, as well as rotational state-resolved velocities in shocks and boundary layers.
文摘Our recent article (Chin. Phys. Lett. 35 (2018)083201) measured the Zeeman shift of cesium atoms using an optical nanofiber. Before our work, Watkins et al.(Ref.[17] in our article) had demonstrated the Zeeman shift also using an optical nanofiber in rubidium atoms. Watkins et al. reported on the observation
基金Supported by the National Natural Science Foundation of China under Grant Nos 91436211 and 11204086the National Basic Research Program of China under Grant No 2011CB921604the Shanghai Science and Technology Committee under Grant No 13PJ1402100
文摘We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i^formation processing and communication.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61144006)
文摘In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given. Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism, the origin of which is analysed. Furthermore, to avoid phase unwrapping in the phase reconstruction, we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions. The reconstructed phase can be obtained directly by performing numerical integration, and thus it is of great convenience for phase reconstruction. Finally, the results of numerical simulations and practical experiments verify the correctness of the proposed method.
文摘Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as precision mechanics and manufacturing, aerospace and automotive testing and inspection, materials science, and biomedical engineering. Advances in Optical Techniques for Me- chanical Measurements presents the latest research progresses in several widely used optical techniques with applications in preci- sion mechanical engineering.
文摘In this study, a precise optical fiber length measurement system is proposed. The measurement technique is based on the measurement of relative Fresnel reflected light intensity in a test fiber. Time delayed optical reflected pulses are obtained from a single nanosecond pulse injected at the input due to the difference in lengths of the reference and test fibers. The lengths of the different optical fibers have been measured with this technique with high resolution and fast response time. The measured results show that, the proposed technique has a comparable performance with the well-known length measurement systems.
基金Supported by National Key Research and Development Program of China under Grant No 2017YFA0304203the National Natural Science Foundation of China under Grant Nos 61675120 and 11434007+2 种基金the National Natural Science Foundation of China for Excellent Research Team under Grant No 61121064the Shanxi Scholarship Council of China,the 1331KSC,the PCSIRT under Grant No IRT13076the Applied Basic Research Project of Shanxi Province under Grant No 201601D202008
文摘Nanofibers have many promising applications because of their advantages of high power density and ultralow saturated light intensity. We present here a Zeeman shift of the Doppler-broadened cesium D2 transition using a tapered optical nanofiber in the presence of a magnetic field. When a weak magnetic field is parallel to the propagating light in the nanofiber, the Zeeman shift rates for different circularly polarized spectra are observed.For the +component, the typical linear Zeeman shift rates of = 3 and = 4 ground-state cesium atoms are measured to be 3.10(±0.19) MHz/G and 3.91(±0.16) MHz/G. For the -component, the values are measured to be-2.81(±0.25) MHz/G, and-0.78(±0.28) MHz/G. The Zeeman shift using the tapered nanofiber can help to develop magnetometers to measure the magnetic field at the narrow local region and the dispersive signal to lock laser frequency.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB21000000)the Open Project Fund of State Key Laboratory of Transient Optics and Photonics,Chinese Academy of Sciences(No.SKLST202011)+1 种基金the National Natural Science Foundation of China(Nos.12103059,12103059,12303076,and 12303077)the Planned Project of Xi’an Bureau of Science and Technology,China(No.E019XK104).
文摘In this paper,we present a remote time-base-free technique for a coherent optical frequency transfer system via fiber.At the remote site,the thermal noise of the optical components is corrected along with the link phase noise caused by environmental effects.In this system,a 1×2 acousto-optic modulator(AOM)is applied at the remote site,with the first light being used to eliminate the noise of the remote time base and interface with remote users while the zeroth light is used to establish an active noise canceling loop.With this technique,a 10 MHz commercial oscillator,used as a time base at the remote site,does not contribute to the noise of the transferred signal.An experimental system is constructed using a 150 km fiber spool to validate the proposed technique.After compensation,the overlapping Allan deviation of the transfer link is 7.42×10^(-15)at 1 s integration time and scales down to 1.07×10^(-18)at 10,000 s integration time.The uncertainty of the transmitted optical frequency is on the order of a few 10-19.This significantly reduces the time-base requirements and costs for multi-user applications without compromising transfer accuracy.Meanwhile,these results show great potential for transferring ultra-stable optical frequency signals to remote sites,especially for point-to-multi-users.
文摘A new error compensating five sample phase shifting algorithm which is insensitive to phase shift error is proposed to retrieve the phase distribution of a fringe pattern. It includes two steps. First, the linear phase shift error is estimated using four sample images. Then, the phase distribution is calculated with error corrected by using the phase shift error estimated in the first step. As the equations of error estimation and phase calculation are simple, this new algorithm is practical as well as effective. Computer simulations were carried out to verify the effectiveness of the algorithm. Results of two other well known error compensating algorithms are also presented, which show the new algorithm is the least sensitive to phase shift error.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA063006)the National Natural Science Foundation of China (Grant No. 40805015)the Excellent Youth Scientific Foundation of Anhui Province, China (Grant No. 10040606Y28)
文摘In this paper, we present simultaneous multiple pollutant gases (CO2, CO, and NO) measurements by using the non-dispersive infrared (NDIR) technique. A cross-correlation correction method is proposed and used to correct the cross-interferences among the target gases. The calculation of calibration curves is based on least-square fittings with third-order polynomials, and the interference functions are approximated by linear curves. The pure absorbance of each gas is obtained by solving three simultaneous equations using the fitted interference functions. Through the interference correction, the signal created at each filter channel only depends on the absorption of the intended gas. Gas mixture samples with different concentrations of CO2, CO, and NO are pumped into the sample cell for analysis. The results show that the measurement error of each gas is less than 4.5%.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60977006, 60777008 and 40704021, and the Fund from China University of Petroleum (East China) under Grant No Y081818.
文摘An accurate phase shift extraction method for generalized phase-shifting interferometry is suggested. Based on the nearly random phase distribution of the diffraction field of the object, a singular formula is derived to calculate the unknown phase shift without the requirements of an iteration process or the selection of the correct value from two or more possible phase shift solutions as needed before. This method can be used in the cases of two or more frames with both smooth and diffusing object surfaces. Computer simulations and optical experiments have satisfactorily verified the efficiency and accuracy of this method.