A femtosecond optical Kerr gate time-gated ballistic imaging method is demonstrated to image a transparent object in a turbid medium. The shape features of the object are obtained by time-resolved selection of the bal...A femtosecond optical Kerr gate time-gated ballistic imaging method is demonstrated to image a transparent object in a turbid medium. The shape features of the object are obtained by time-resolved selection of the ballistic photons with different optical path lengths, the thickness distribution of the object is mapped, and the maximum is less than 3.6%. This time-resolved ballistic imaging has potential applications in studying properties of the liquid core in the near field of the fuel spray.展开更多
Wavelength-dependent mathematical modelling of the differential energy change of a photon has been performed inside a proposed hypothetical optical medium.The existence of this medium demands certain mathematical cons...Wavelength-dependent mathematical modelling of the differential energy change of a photon has been performed inside a proposed hypothetical optical medium.The existence of this medium demands certain mathematical constraints,which have been derived in detail.Using reverse modelling,a medium satisfying the derived conditions is proven to store energy as the photon propagates from the entry to exit point.A single photon with a given intensity is considered in the analysis and hypothesized to possess a definite non-zero probability of maintaining its energy and velocity functions analytic inside the proposed optical medium,despite scattering,absorption,fluorescence,heat generation,and other nonlinear mechanisms.The energy and velocity functions are thus singly and doubly differentiable with respect to wavelength.The solution of the resulting second-order differential equation in two variables proves that energy storage or energy flotation occurs inside a medium with a refractive index satisfying the described mathematical constraints.The minimum-value-normalized refractive index profiles of the modelled optical medium for transformed wavelengths both inside the medium and for vacuum have been derived.Mathematical proofs,design equations,and detailed numerical analyses are presented in the paper.展开更多
The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere ...The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere has been performed. It has been found that the dependence of the scintillation index at the axis of the optical vortex on the turbulence intensity at the path has the form of a unit step. It has been shown that the behavior of scintillations in the cross sections of vortex and nonvortex beams differs widely. Despite the scintillation index of vortex beams has been calculated only for the simplest LG10 mode, the obtained results are quite general, because they demonstrate the main properties inherent in scintillations of vortex beams of any type.展开更多
Based on the Dark State Polariton (DSP) theory, a full numerical simulation of an optical packet's trapping and retrieval procedure in the Electromagnetically Induced Transparency (BIT) medium is first presented h...Based on the Dark State Polariton (DSP) theory, a full numerical simulation of an optical packet's trapping and retrieval procedure in the Electromagnetically Induced Transparency (BIT) medium is first presented here by us.展开更多
With the shadowgraph method, three ultrasonic pulses in Water, which correspond to the conversion modes of the fast compressional wave, the transverse wave and the slow compressional wave in the sample of Fluid-Satura...With the shadowgraph method, three ultrasonic pulses in Water, which correspond to the conversion modes of the fast compressional wave, the transverse wave and the slow compressional wave in the sample of Fluid-Saturated Porous Medium (FSPM) respectively,were observed and recorded by CCD camera. The positions of these pulses are cousistent with the computed positions and the time interval between these pulses measured by a transmitterreceiver method.展开更多
In organic solar cells(OSCs),it is an effective way to improve the power conversion efficiency(PCE)by adding a guest component with appropriate absorption and energy levels in the host system.Herein,a new nonfullerene...In organic solar cells(OSCs),it is an effective way to improve the power conversion efficiency(PCE)by adding a guest component with appropriate absorption and energy levels in the host system.Herein,a new nonfullerene acceptor(NFA)named TBF-2Cl was developed by the strategy of expanding theπconjugated core of 2,2’-(((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-2,7-diyl)bis(methaneylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(IDT-4Cl)with two benzene rings.With increase of benzene units,TBF-2Cl exhibits higher lowest unoccupied molecular orbital(LUMO)level of-3.75 eV than that of one benzene unit based NFA IDT-4Cl and fluorene core based NFA F-2Cl,which facilitates enhancing the open-circuit voltage(V_(oc))of ternary devices.Moreover,TBF-2Cl film shows a medium optical bandgap with the absorption range from 500-800 nm,being well complementary with the wide bandgap polymer donor D18 and narrow bandgap NFA CH-6F.Accordingly,a remarkable PCE of 18.92%with a high short-circuit current density(J_(sc))of 27.40 mA·cm^(-2),a fill factor(FF)of 0.749,especially an outstanding V_(oc) of 0.922 V was achieved for the optimal ternary device based on D18:TBF-2Cl:CH-6F,surpassing the binary counterpart(17.08%).The findings provide insight into the development of new guest acceptors for obtaining more efficient OSCs.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61427816 and 61690221the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘A femtosecond optical Kerr gate time-gated ballistic imaging method is demonstrated to image a transparent object in a turbid medium. The shape features of the object are obtained by time-resolved selection of the ballistic photons with different optical path lengths, the thickness distribution of the object is mapped, and the maximum is less than 3.6%. This time-resolved ballistic imaging has potential applications in studying properties of the liquid core in the near field of the fuel spray.
文摘Wavelength-dependent mathematical modelling of the differential energy change of a photon has been performed inside a proposed hypothetical optical medium.The existence of this medium demands certain mathematical constraints,which have been derived in detail.Using reverse modelling,a medium satisfying the derived conditions is proven to store energy as the photon propagates from the entry to exit point.A single photon with a given intensity is considered in the analysis and hypothesized to possess a definite non-zero probability of maintaining its energy and velocity functions analytic inside the proposed optical medium,despite scattering,absorption,fluorescence,heat generation,and other nonlinear mechanisms.The energy and velocity functions are thus singly and doubly differentiable with respect to wavelength.The solution of the resulting second-order differential equation in two variables proves that energy storage or energy flotation occurs inside a medium with a refractive index satisfying the described mathematical constraints.The minimum-value-normalized refractive index profiles of the modelled optical medium for transformed wavelengths both inside the medium and for vacuum have been derived.Mathematical proofs,design equations,and detailed numerical analyses are presented in the paper.
基金supported in part by the Division of Physical Sciences of RAS “Fundamental Problems of Photonics and Physics of New Optical Materials.”
文摘The comparative numerical and analytical analysis of scintillation indices of the vortex Laguerre–Gaussian beam and the nonvortex doughnut hole and Gaussian beams propagating in the randomly inhomogeneous atmosphere has been performed. It has been found that the dependence of the scintillation index at the axis of the optical vortex on the turbulence intensity at the path has the form of a unit step. It has been shown that the behavior of scintillations in the cross sections of vortex and nonvortex beams differs widely. Despite the scintillation index of vortex beams has been calculated only for the simplest LG10 mode, the obtained results are quite general, because they demonstrate the main properties inherent in scintillations of vortex beams of any type.
文摘Based on the Dark State Polariton (DSP) theory, a full numerical simulation of an optical packet's trapping and retrieval procedure in the Electromagnetically Induced Transparency (BIT) medium is first presented here by us.
文摘With the shadowgraph method, three ultrasonic pulses in Water, which correspond to the conversion modes of the fast compressional wave, the transverse wave and the slow compressional wave in the sample of Fluid-Saturated Porous Medium (FSPM) respectively,were observed and recorded by CCD camera. The positions of these pulses are cousistent with the computed positions and the time interval between these pulses measured by a transmitterreceiver method.
基金supported by the National Natural Science Foundation of China(No.52173010)Jining University(Nos.2022HHKJ11,2019BSZX01).
文摘In organic solar cells(OSCs),it is an effective way to improve the power conversion efficiency(PCE)by adding a guest component with appropriate absorption and energy levels in the host system.Herein,a new nonfullerene acceptor(NFA)named TBF-2Cl was developed by the strategy of expanding theπconjugated core of 2,2’-(((4,4,9,9-tetrahexyl-4,9-dihydro-s-indaceno[1,2-b:5,6-b’]dithiophene-2,7-diyl)bis(methaneylylidene))bis(5,6-dichloro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(IDT-4Cl)with two benzene rings.With increase of benzene units,TBF-2Cl exhibits higher lowest unoccupied molecular orbital(LUMO)level of-3.75 eV than that of one benzene unit based NFA IDT-4Cl and fluorene core based NFA F-2Cl,which facilitates enhancing the open-circuit voltage(V_(oc))of ternary devices.Moreover,TBF-2Cl film shows a medium optical bandgap with the absorption range from 500-800 nm,being well complementary with the wide bandgap polymer donor D18 and narrow bandgap NFA CH-6F.Accordingly,a remarkable PCE of 18.92%with a high short-circuit current density(J_(sc))of 27.40 mA·cm^(-2),a fill factor(FF)of 0.749,especially an outstanding V_(oc) of 0.922 V was achieved for the optimal ternary device based on D18:TBF-2Cl:CH-6F,surpassing the binary counterpart(17.08%).The findings provide insight into the development of new guest acceptors for obtaining more efficient OSCs.