期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
1
作者 Yi Liu Yuanqi Gu +5 位作者 Yu Ning Pengfei Chen Yao Yao Yajun You Wenjun He Xiujian Chou 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第9期333-339,共7页
Temperature and strain sensitivities of surface acoustic wave(SAW)and hybrid acoustic wave(HAW)Brillouin scat-tering(BS)in 1μm-1.3μm diameter optical microfibers are simulated.In contrast to stimulated Brillouin sca... Temperature and strain sensitivities of surface acoustic wave(SAW)and hybrid acoustic wave(HAW)Brillouin scat-tering(BS)in 1μm-1.3μm diameter optical microfibers are simulated.In contrast to stimulated Brillouin scattering(SBS)from bulk acoustic wave in standard optical fiber,SAW and HAW BS,due to SAWs and HAWs induced by the coupling of longitudinal and shear waves and propagating along the surface and core of microfiber respectively,facilitate innovative detection in optical microfibers sensing.The highest temperature and strain sensitivities of the hybrid acoustic modes(HAMs)are 1.082 MHz/℃and 0.0289 MHz/με,respectively,which is suitable for microfiber sensing applica-tion of high temperature and strain resolutions.Meanwhile,the temperature and strain sensitivities of the SAMs are less affected by fiber diameter changes,ranging from 0.05 MHz/℃/μm to 0.25 MHz/℃/μm and 1×10^(-4) MHz/με/μm to 5×10^(-4) MHz/με/μm,respectively.It can be found that that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers.Besides,the simultaneous sensing of temperature and strain can be realized by SAW and HAW BS,with temperature and strain errors as low as 0.30℃-0.34℃and 14.47με-16.25με. 展开更多
关键词 Brllouin scatering surface acoustic waves hybrid acoustic waves optical microfiber sensing
下载PDF
Long-period grating inscription on polymer functionalized optical microfibers and its applications in optical sensing 被引量:1
2
作者 Z.Y.Xu Y.H.Li L.J.Wang 《Photonics Research》 SCIE EI 2016年第2期45-48,共4页
We demonstrated long-period grating(LPG) inscription on polymer functionalized optical microfibers and its applications in optical sensing. Optical microfibers were functionalized with ultraviolet-sensitive polymethyl... We demonstrated long-period grating(LPG) inscription on polymer functionalized optical microfibers and its applications in optical sensing. Optical microfibers were functionalized with ultraviolet-sensitive polymethyl methacrylate jackets and, thus, LPGs could be inscribed on optical microfibers via point-by-point ultraviolet laser exposure. For a 2 mm long microfiber LPG(MLPG) inscribed on optical microfibers with a diameter of 5.4 μm, a resonant dip of 15 d B at 1377 nm was observed. This MLPG showed a high sensitivity of strain and axial force, i.e.,-1.93 pm∕με and-1.15 pm∕μN, respectively. Although the intrinsic temperature sensitivity of the LPGs is relatively low, i.e.,-12.75 pm∕°C, it can be increased to be-385.11 pm∕°C by appropriate sealing. Benefiting from the small footprint and high sensitivity, MLPGs could have potential applications in optical sensing of strain,axial force, and temperature. 展开更多
关键词 MLPG Long-period grating inscription on polymer functionalized optical microfibers and its applications in optical sensing
原文传递
Simultaneous Force and Temperature Measurement Using Optical Microfiber Asymmetrical Interferometer
3
作者 Caibin YU Xiaoxiao CHEN +3 位作者 Yuan GONG Yu WU Yunjiang RAO Gangding PENG 《Photonic Sensors》 SCIE EI CAS 2014年第3期242-247,共6页
A novel optical microfiber asymmetric Fabry-Perot interferometric (MAFPI) sensor is developed for simultaneous measurement of force and temperature. The MAFPI structure is formed by a weak fiber Bragg grating (FBG... A novel optical microfiber asymmetric Fabry-Perot interferometric (MAFPI) sensor is developed for simultaneous measurement of force and temperature. The MAFPI structure is formed by a weak fiber Bragg grating (FBG), a section of the microfiber, and a cleaved fiber end surface. The narrowband beam reflected from the low-reflectivity FBG and the broadband beam from the Fresnel reflection interfere lead to its unique sensing performance. The force sensing is performed by detecting the bending-loss induced fringe contrast changes, while the Bragg wavelength shift is employed for temperature measurement. Sensitivities of 9.8pm/℃ and 0.025dB/μN were obtained experimentally for temperature and force measurements, respectively. 展开更多
关键词 optical microfiber weak FBC interferometric
原文传递
Micro/Nanofiber Optical Sensors 被引量:9
4
作者 Lei ZHANG Jingyi LOU Limin TONG 《Photonic Sensors》 SCIE EI 2011年第1期31-42,共12页
As a low-dimensional optical fiber with diameter close to or below the wavelength of light,optical micro/nanofiber(MNF)offers a number of favorable properties for optical sensing,which have been exploited in a variety... As a low-dimensional optical fiber with diameter close to or below the wavelength of light,optical micro/nanofiber(MNF)offers a number of favorable properties for optical sensing,which have been exploited in a variety of sensing applications,including physical,chemical,and biological sensors.In this paper we review the principles and applications of silica,glass,and polymer optical micro/nanofibers for physical and chemical sensing. 展开更多
关键词 optical microfiber optical nanofiber tapered fiber physical sensor chemical sensor REVIEW
原文传递
Recent Progress in Microfiber-Optic Sensors 被引量:2
5
作者 Wei LUO Ye CHEN Fei XU 《Photonic Sensors》 SCIE EI CAS CSCD 2021年第1期45-68,共24页
Recently,microfiber-optic sensors with high sensitivity,fast response times,and a compact size have become an area of interest that integrates fiber optics and nanotechnology.Distinct advantages of optical microfiber,... Recently,microfiber-optic sensors with high sensitivity,fast response times,and a compact size have become an area of interest that integrates fiber optics and nanotechnology.Distinct advantages of optical microfiber,such as large accessible evanescent fields and convenient configurability,provide attractive benefits for micro-and nano-scale optical sensing.Here,we review the basic principles of microfiber-optic sensors based on a broad range of microstructures,nanostructures,and functional materials.We also introduce the recent progress and state-of-the-art in this field and discuss the limitations and opportunities for future development. 展开更多
关键词 optical microfiber optical sensing fiber-optic sensors MICROSTRUCTURES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部