Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states...Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states and quadrature-amplitude squeezed vacuum states were obtained using one setup respectively.A quantum-enhanced fiber Mach–Zehnder interferometer(FMZI)was demonstrated for low-frequency phase measurement using the generated quadrature-phase squeezed vacuum states that were injected.When phase modulation was measured with the quantumenhanced FMZI,there were above 3 dB quantum improvements beyond the shot-noise limit(SNL)from 40 kHz to 200 kHz,and 2.3 dB quantum improvement beyond the SNL at 20 kHz was obtained.The generated quadrature-amplitude squeezed vacuum state was applied to perform low-frequency amplitude modulation measurement for sensitivity beyond the SNL based on optical fiber construction.There were about 2 dB quantum improvements beyond the SNL from 60 kHz to 200 kHz.The current scheme proves that quantum-enhanced fiber-based sensors are feasible and have potential applications in high-precision measurements based on fiber,particularly in the low-frequency range.展开更多
This review focuses on recent developments in additive manufacturing(AM)of precision optical devices,particularly devices consisting of components with critical features at the micro-and nanoscale.These include,but ar...This review focuses on recent developments in additive manufacturing(AM)of precision optical devices,particularly devices consisting of components with critical features at the micro-and nanoscale.These include,but are not limited to,microlenses,diffractive optical elements,and photonic devices.However,optical devices with large-size lenses and mirrors are not specifically included as this technology has not demonstrated feasibilities in that category.The review is roughly divided into two slightly separated topics,the first on meso-and microoptics and the second on optics with nanoscale features.Although AM of precision optics is still in its infancy with many unanswered questions,the references cited on this exciting topic demonstrate an enabling technology with almost unlimited possibilities.There are many high quality reviews of AM processes of non-optical components,hence they are not the focus of this review.The main purpose of this review is to start a conversion on optical fabrication based on information about 3D AM methods that has been made available to date,with an ultimate long-term goal of establishing new optical manufacturing methods that are low cost and highly precise with extreme flexibility.展开更多
Dual-comb interferometric systems with high time accuracy have been realized for various applications.The flourishing ultralow noise dual-comb system promotes the measurement and characterization of relative timing ji...Dual-comb interferometric systems with high time accuracy have been realized for various applications.The flourishing ultralow noise dual-comb system promotes the measurement and characterization of relative timing jitter,thus improving time accuracy.With optical solutions,introducing an optical reference enables 105 harmonics measurements,thereby breaking the limit set by electrical methods;nonlinear processes or spectral interference schemes were also employed to track the relative timing jitter.However,such approaches operating in the time domain either require additional continuous references or impose stringent requirements on the amount of timing jitter.We propose a scheme to correct the relative timing jitter of a free-running dual-comb interferometry assisted by a Fabry-Pérot(F-P)cavity in the frequency domain.With high wavelength thermal stability provided by the F-P cavity,the absolute wavelength deviation in the operating bandwidth is compressed to<0.4 pm,corresponding to a subpicosecond sensitivity of pulse-to-pulse relative timing jitter.Also,Allan deviation of 10^(-10) is obtained under multiple coherent averaging,which lays the foundation for mode-resolved molecular spectroscopic applications.The spectral absorption features of hydrogen cyanide gas molecules at ambient temperature were measured and matched to the HITRAN database.Our scheme promises to provide new ideas on sensitive measurements of relative timing jitter.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.62175135)the Fundamental Research Program of Shanxi Province(Grant No.202103021224025)。
文摘Stable low-frequency squeezed vacuum states at a wavelength of 1550 nm were generated.By controlling the squeezing angle of the squeezed vacuum states,two types of low-frequency quadrature-phase squeezed vacuum states and quadrature-amplitude squeezed vacuum states were obtained using one setup respectively.A quantum-enhanced fiber Mach–Zehnder interferometer(FMZI)was demonstrated for low-frequency phase measurement using the generated quadrature-phase squeezed vacuum states that were injected.When phase modulation was measured with the quantumenhanced FMZI,there were above 3 dB quantum improvements beyond the shot-noise limit(SNL)from 40 kHz to 200 kHz,and 2.3 dB quantum improvement beyond the SNL at 20 kHz was obtained.The generated quadrature-amplitude squeezed vacuum state was applied to perform low-frequency amplitude modulation measurement for sensitivity beyond the SNL based on optical fiber construction.There were about 2 dB quantum improvements beyond the SNL from 60 kHz to 200 kHz.The current scheme proves that quantum-enhanced fiber-based sensors are feasible and have potential applications in high-precision measurements based on fiber,particularly in the low-frequency range.
文摘This review focuses on recent developments in additive manufacturing(AM)of precision optical devices,particularly devices consisting of components with critical features at the micro-and nanoscale.These include,but are not limited to,microlenses,diffractive optical elements,and photonic devices.However,optical devices with large-size lenses and mirrors are not specifically included as this technology has not demonstrated feasibilities in that category.The review is roughly divided into two slightly separated topics,the first on meso-and microoptics and the second on optics with nanoscale features.Although AM of precision optics is still in its infancy with many unanswered questions,the references cited on this exciting topic demonstrate an enabling technology with almost unlimited possibilities.There are many high quality reviews of AM processes of non-optical components,hence they are not the focus of this review.The main purpose of this review is to start a conversion on optical fabrication based on information about 3D AM methods that has been made available to date,with an ultimate long-term goal of establishing new optical manufacturing methods that are low cost and highly precise with extreme flexibility.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0705904)the National Natural Science Foundation of China(Grant Nos.61927817 and 62075072).
文摘Dual-comb interferometric systems with high time accuracy have been realized for various applications.The flourishing ultralow noise dual-comb system promotes the measurement and characterization of relative timing jitter,thus improving time accuracy.With optical solutions,introducing an optical reference enables 105 harmonics measurements,thereby breaking the limit set by electrical methods;nonlinear processes or spectral interference schemes were also employed to track the relative timing jitter.However,such approaches operating in the time domain either require additional continuous references or impose stringent requirements on the amount of timing jitter.We propose a scheme to correct the relative timing jitter of a free-running dual-comb interferometry assisted by a Fabry-Pérot(F-P)cavity in the frequency domain.With high wavelength thermal stability provided by the F-P cavity,the absolute wavelength deviation in the operating bandwidth is compressed to<0.4 pm,corresponding to a subpicosecond sensitivity of pulse-to-pulse relative timing jitter.Also,Allan deviation of 10^(-10) is obtained under multiple coherent averaging,which lays the foundation for mode-resolved molecular spectroscopic applications.The spectral absorption features of hydrogen cyanide gas molecules at ambient temperature were measured and matched to the HITRAN database.Our scheme promises to provide new ideas on sensitive measurements of relative timing jitter.