期刊文献+
共找到10,263篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental study on the variation of optical remote sensing imaging characteristics of internal solitary waves with wind speed
1
作者 Zhe CHANG Lina SUN +4 位作者 Tengfei LIU Meng ZHANG Keda LIANG Junmin MENG Jing WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期408-420,共13页
Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by opt... Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by optical remote sensing when the wind is too strong.The relationship between the characteristics of ISWs bands in optical remote sensing images and the wind speed is still unclear.The influence of wind speeds on the characteristics of the ISWs bands is investigated based on the physical simulation experiments with the wind speeds of 1.6,3.1,3.5,3.8,and 3.9 m/s.The experimental results show that when the wind speed is 3.9 m/s,the ISWs bands cannot be observed in optical remote sensing images with the stratification of h_(1)∶h_(2)=7∶58,ρ_(1)∶ρ_(2)=1∶1.04.When the wind speeds are 3.1,3.5,and 3.8 m/s,which is lower than 3.9 m/s,the ISWs bands can be obtained in the simulated optical remote sensing image.The location of the band’s dark and light extremum and the band’s peak-to-peak spacing are almost not affected by wind speed.More-significant wind speeds can cause a greater gray difference of the light-dark bands.This provided a scientific basis for further understanding of ISW optical remote sensing imaging. 展开更多
关键词 internal solitary wave(ISW) optical remote sensing wind speed characteristics of ISWs bands
下载PDF
Functional Optical Fiber Sensors Detecting Imperceptible Physical/Chemical Changes for Smart Batteries
2
作者 Yiding Li Li Wang +3 位作者 Youzhi Song Wenwei Wang Cheng Lin Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期268-308,共41页
The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal st... The battery technology progress has been a contradictory process in which performance improvement and hidden risks coexist.Now the battery is still a“black box”,thus requiring a deep understanding of its internal state.The battery should“sense its internal physical/chemical conditions”,which puts strict requirements on embedded sensing parts.This paper summarizes the application of advanced optical fiber sensors in lithium-ion batteries and energy storage technologies that may be mass deployed,focuses on the insights of advanced optical fiber sensors into the processes of one-dimensional nano-micro-level battery material structural phase transition,electrolyte degradation,electrode-electrolyte interface dynamics to three-dimensional macro-safety evolution.The paper contributes to understanding how to use optical fiber sensors to achieve“real”and“embedded”monitoring.Through the inherent advantages of the advanced optical fiber sensor,it helps clarify the battery internal state and reaction mechanism,aiding in the establishment of more detailed models.These advancements can promote the development of smart batteries,with significant importance lying in essentially promoting the improvement of system consistency.Furthermore,with the help of smart batteries in the future,the importance of consistency can be weakened or even eliminated.The application of advanced optical fiber sensors helps comprehensively improve the battery quality,reliability,and life. 展开更多
关键词 Smart battery Advanced embedded optical fiber sensor Battery internal physical/chemical state Quality-reliability-life characteristic
下载PDF
Quantitative Identification of Delamination Damage in Composite Structure Based on Distributed Optical Fiber Sensors and Model Updating
3
作者 Hao Xu Jing Wang +3 位作者 Rubin Zhu Alfred Strauss Maosen Cao Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第6期785-803,共19页
Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quan... Delamination is a prevalent type of damage in composite laminate structures.Its accumulation degrades structural performance and threatens the safety and integrity of aircraft.This study presents a method for the quantitative identification of delamination identification in composite materials,leveraging distributed optical fiber sensors and a model updating approach.Initially,a numerical analysis is performed to establish a parameterized finite element model of the composite plate.Then,this model subsequently generates a database of strain responses corresponding to damage of varying sizes and locations.The radial basis function neural network surrogate model is then constructed based on the numerical simulation results and strain responses captured from the distributed fiber optic sensors.Finally,a multi-island genetic algorithm is employed for global optimization to identify the size and location of the damage.The efficacy of the proposed method is validated through numerical examples and experiment studies,examining the correlations between damage location,damage size,and strain responses.The findings confirm that the model updating technique,in conjunction with distributed fiber optic sensors,can precisely identify delamination in composite structures. 展开更多
关键词 Composite structures fiber optic sensor damage identification model updating surrogate model
下载PDF
Optical micro/nanofiber enabled tactile sensors and soft actuators:A review
4
作者 Lei Zhang Yuqi Zhen Limin Tong 《Opto-Electronic Science》 2024年第8期13-29,共17页
As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progres... As a combination of fiber optics and nanotechnology,optical micro/nanofiber(MNF)is considered as an important multifunctional building block for fabricating various miniaturized photonic devices.With the rapid progress in flexible optoelectronics,MNF has been emerging as a promising candidate for assembling tactile sensors and soft actuators owing to its unique optical and mechanical properties.This review discusses the advances in MNF enabled tactile sensors and soft actuators,specifically,focusing on the latest research results over the past 5 years and the applications in health monitoring,human-machine interfaces,and robotics.Future prospects and challenges in developing flexible MNF devices are also presented. 展开更多
关键词 flexible opto-electronic devices tactile sensors soft actuators optical micro/nanofibers
下载PDF
Optical remote sensing image characteristics of large amplitude convex mode-2 internal solitary waves:an experimental study
5
作者 Zhixin Li Meng Zhang +1 位作者 Keda Liang Jing Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第6期16-23,共8页
A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing s... A series of experiments are designed to propose a new method to study the characteristics of convex mode-2internal solitary waves(ISWs)in optical remote sensing images using a laboratory-based optical remote sensing simulation platform.The corresponding wave parameters of large-amplitude convex mode-2 ISWs under smooth surfaces are investigated along with the optical remote sensing characteristic parameters.The mode-2 ISWs in the experimentally obtained optical remote sensing image are produced by their overall modulation effect on the water surface,and the extreme points of the gray value of the profile curve of bright-dark stripes appear at the same location as the real optical remote sensing image.The present data extend to a larger range than previous studies,and for the characteristics of large amplitude convex mode-2 ISWs,the experimental results show a second-order dependence of wavelength on amplitude.There is a close relationship between optical remote sensing characteristic parameters and wave parameters of mode-2 ISWs,in which there is a positive linear relationship between the bright-dark spacing and wavelength and a nonlinear relationship with the amplitude,especially when the amplitude is very large,there is a significant increase in bright-dark spacing. 展开更多
关键词 mode-2 internal solitary waves optical remote sensing characteristic parameter wave characteristic
下载PDF
An Intelligent Detection Method for Optical Remote Sensing Images Based on Improved YOLOv7
6
作者 Chao Dong Xiangkui Jiang 《Computers, Materials & Continua》 SCIE EI 2023年第12期3015-3036,共22页
To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model... To address the issue of imbalanced detection performance and detection speed in current mainstream object detection algorithms for optical remote sensing images,this paper proposes a multi-scale object detection model for remote sensing images on complex backgrounds,called DI-YOLO,based on You Only Look Once v7-tiny(YOLOv7-tiny).Firstly,to enhance the model’s ability to capture irregular-shaped objects and deformation features,as well as to extract high-level semantic information,deformable convolutions are used to replace standard convolutions in the original model.Secondly,a Content Coordination Attention Feature Pyramid Network(CCA-FPN)structure is designed to replace the Neck part of the original model,which can further perceive relationships between different pixels,reduce feature loss in remote sensing images,and improve the overall model’s ability to detect multi-scale objects.Thirdly,an Implicitly Efficient Decoupled Head(IEDH)is proposed to increase the model’s flexibility,making it more adaptable to complex detection tasks in various scenarios.Finally,the Smoothed Intersection over Union(SIoU)loss function replaces the Complete Intersection over Union(CIoU)loss function in the original model,resulting in more accurate prediction of bounding boxes and continuous model optimization.Experimental results on the High-Resolution Remote Sensing Detection(HRRSD)dataset demonstrate that the proposed DI-YOLO model outperforms mainstream target detection algorithms in terms of mean Average Precision(mAP)for optical remote sensing image detection.Furthermore,it achieves Frames Per Second(FPS)of 138.9,meeting fast and accurate detection requirements. 展开更多
关键词 Object detection optical remote sensing images YOLOv7-tiny real-time detection
下载PDF
Present status of research on space optical remote sensors at CIOMP 被引量:1
7
作者 WANG Jia-qi HAN Chang-yuan 《光学精密工程》 EI CAS CSCD 2003年第3期213-222,共10页
This paper is to review our space optical remote sensor(SORS) technologies including optical materials, optics fabrication and coating, optical testing, system assembly and final testing, and space environment simulat... This paper is to review our space optical remote sensor(SORS) technologies including optical materials, optics fabrication and coating, optical testing, system assembly and final testing, and space environment simulation experiment conducted in our institute. The primary parts of the fabrication and testing facilities and results are described in detail. 展开更多
关键词 空间光学 遥感传感器 光学材料 光学系统 SORS CIOMP 光学遥感
下载PDF
Bioinspired Multifunctional Self-Sensing Actuated Gradient Hydrogel for Soft-Hard Robot Remote Interaction
8
作者 He Liu Haoxiang Chu +10 位作者 Hailiang Yuan Deliang Li Weisi Deng Zhiwei Fu Ruonan Liu Yiying Liu Yixuan Han Yanpeng Wang Yue Zhao Xiaoyu Cui Ye Tian 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期139-152,共14页
The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sens... The development of bioinspired gradient hydrogels with self-sensing actuated capabilities for remote interaction with soft-hard robots remains a challenging endeavor. Here, we propose a novel multifunctional self-sensing actuated gradient hydrogel that combines ultrafast actuation and high sensitivity for remote interaction with robotic hand. The gradient network structure, achieved through a wettability difference method involving the rapid precipitation of MoO_(2) nanosheets, introduces hydrophilic disparities between two sides within hydrogel. This distinctive approach bestows the hydrogel with ultrafast thermo-responsive actuation(21° s^(-1)) and enhanced photothermal efficiency(increase by 3.7 ℃ s^(-1) under 808 nm near-infrared). Moreover, the local cross-linking of sodium alginate with Ca^(2+) endows the hydrogel with programmable deformability and information display capabilities. Additionally, the hydrogel exhibits high sensitivity(gauge factor 3.94 within a wide strain range of 600%), fast response times(140 ms) and good cycling stability. Leveraging these exceptional properties, we incorporate the hydrogel into various soft actuators, including soft gripper, artificial iris, and bioinspired jellyfish, as well as wearable electronics capable of precise human motion and physiological signal detection. Furthermore, through the synergistic combination of remarkable actuation and sensitivity, we realize a self-sensing touch bioinspired tongue. Notably, by employing quantitative analysis of actuation-sensing, we realize remote interaction between soft-hard robot via the Internet of Things. The multifunctional self-sensing actuated gradient hydrogel presented in this study provides a new insight for advanced somatosensory materials, self-feedback intelligent soft robots and human–machine interactions. 展开更多
关键词 SELF-SENSING Gradient structure Bioinspired actuator Hydrogel sensor remote interaction
下载PDF
Application of Optical Hydrogels in Environmental Sensing
9
作者 Shuo Yang Shruti Sarkar +2 位作者 Xing Xie Dan Li Jianmin Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期311-336,共26页
The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection ... The ever-increasing complexity of environmental pollutants urgently warrants the development of new detection technologies.Sensors based on the optical properties of hydrogels enabling fast and easy in situ detection are attracting increasing attention.In this paper,the data from 138 papers about different optical hydrogels(OHs)are extracted for statistical analysis.The detection performance and potential of various types of OHs in different environmental pollutant detection scenarios were evaluated and compared to those obtained using the standard detection method.Based on this analysis,the target recognition and sensing mechanisms of two main types of OHs are reviewed and discussed:photonic crystal hydrogels(PCHs)and fluorescent hydrogels(FHs).For PCHs,the environmental stimulus response,target receptors,inverse opal structures,and molecular imprinting techniques related to PCHs are reviewed and summarized.Furthermore,the different types of fluorophores(i.e.,compound probes,biomacromolecules,quantum dots,and luminescent microbes)of FHs are discussed.Finally,the potential academic research directions to address the challenges of applying and developing OHs in environmental sensing are proposed,including the fusion of various OHs,introduction of the latest technologies in various fields to the construction of OHs,and development of multifunctional sensor arrays. 展开更多
关键词 environmental sensors fluorescent hydrogel optical hydrogel photonic crystal hydrogel pollution detection
下载PDF
Distributed fiber optic sensors for tunnel monitoring:A state-of-the-art review
10
作者 Xuehui Zhang Honghu Zhu +1 位作者 Xi Jiang Wout Broere 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3841-3863,共23页
Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study pr... Distributed fiber optic sensors(DFOSs)possess the capability to measure strain and temperature variations over long distances,demonstrating outstanding potential for monitoring underground infrastructure.This study presents a state-of-the-art review of the DFOS applications for monitoring and assessing the deformation behavior of typical tunnel infrastructure,including bored tunnels,conventional tunnels,as well as immersed and cut-and-cover tunnels.DFOS systems based on Brillouin and Rayleigh scattering principles are both considered.When implementing DFOS monitoring,the fiber optic cable can be primarily installed along transverse and longitudinal directions to(1)measure distributed strains by continuously adhering the fiber to the structure’s surface or embedding it in the lining,or(2)measure point displacements by spot-anchoring it on the lining surface.There are four critical aspects of DFOS monitoring,including proper selection of the sensing fiber,selection of the measuring principle for the specific application,design of an effective sensor layout,and establishment of robust field sensor instrumentation.These four issues are comprehensively discussed,and practical suggestions are provided for the implementation of DFOS in tunnel infrastructure monitoring. 展开更多
关键词 Distributed fiber optic sensor(DFOS) Tunnel infrastructure Distributed strain sensing Point displacement monitoring Field instrumentation
下载PDF
A Modified Principal Component Analysis Method for Honeycomb Sandwich Panel Debonding Recognition Based on Distributed Optical Fiber Sensing Signals
11
作者 Shuai Chen Yinwei Ma +5 位作者 Zhongshu Wang Zongmei Xu Song Zhang Jianle Li Hao Xu Zhanjun Wu 《Structural Durability & Health Monitoring》 EI 2024年第2期125-141,共17页
The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scatt... The safety and integrity requirements of aerospace composite structures necessitate real-time health monitoring throughout their service life.To this end,distributed optical fiber sensors utilizing back Rayleigh scattering have been extensively deployed in structural health monitoring due to their advantages,such as lightweight and ease of embedding.However,identifying the precise location of damage from the optical fiber signals remains a critical challenge.In this paper,a novel approach which namely Modified Sliding Window Principal Component Analysis(MSWPCA)was proposed to facilitate automatic damage identification and localization via distributed optical fiber sensors.The proposed method is able to extract signal characteristics interfered by measurement noise to improve the accuracy of damage detection.Specifically,we applied the MSWPCA method to monitor and analyze the debonding propagation process in honeycomb sandwich panel structures.Our findings demonstrate that the training model exhibits high precision in detecting the location and size of honeycomb debonding,thereby facilitating reliable and efficient online assessment of the structural health state. 展开更多
关键词 Structural health monitoring distributed opticalfiber sensor damage identification honeycomb sandwich panel principal component analysis
下载PDF
Contribution of Satellite Observations in the Optical and Microphysical Characterization of Aerosols in Burkina Faso, West Africa
12
作者 Nébon Bado Serge Dimitri Bazyomo +4 位作者 Germain Wende Pouiré Ouedraogo Bruno Korgo Mamadou Simina Dramé Florent P. Kieno Sié Kam 《Atmospheric and Climate Sciences》 2024年第1期154-171,共18页
In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitori... In this work, we proceed to an optical and microphysical analysis of the observations reversed by the MODIS, SeaWiFS, MISR and OMI sensors with the aim of proposing the best-adapted airborne sensor for better monitoring of aerosols in Burkina Faso. To this end, a comparison of AOD between satellite observations and in situ measurements at the Ouagadougou site reveals an underestimation of AERONET AOD except for OMI which overestimates them. Also, an inter-comparison done based on the linear regression line representation shows the correlation between the aerosol models incorporated in the airborne sensor inversion algorithms and the aerosol population probed. This can be seen through the correlation coefficients R which are 0.84, 0.64, 0.55 and 0.054 for MODIS, SeaWiFS, MISR and OMI respectively. Furthermore, an optical analysis of aerosols in Burkina Faso by the MODIS sensor from 2001 to 2016 indicates a large spatial and temporal variability of particles strongly dominated by desert dust. This is corroborated by the annual and seasonal cycles of the AOD at 550 nm and the Angström coefficient measured in the spectral range between 412 nm and 470 nm. A zoom on a few sites chosen according to the three climatic zones confirms the majority presence of mineral aerosols in Burkina Faso, whose maxima are observed in spring and summer. 展开更多
关键词 AERONET Airborne sensors AEROSOL optical and Microphysical Properties
下载PDF
Mapping the bathymetry of shallow coastal water using singleframe fine-resolution optical remote sensing imagery 被引量:7
13
作者 LI Jiran ZHANG Huaguo +2 位作者 HOU Pengfei FU Bin ZHENG Gang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第1期60-66,共7页
This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water dep... This paper presents a bathymetry inversion method using single-frame fine-resolution optical remote sensing imagery based on ocean-wave refraction and shallow-water wave theory. First, the relationship among water depth, wavelength and wave radian frequency in shallow water was deduced based on shallow-water wave theory. Considering the complex wave distribution in the optical remote sensing imagery, Fast Fourier Transform (FFT) and spatial profile measurements were applied for measuring the wavelengths. Then, the wave radian frequency was calculated by analyzing the long-distance fluctuation in the wavelength, which solved a key problem in obtaining the wave radian frequency in a single-frame image. A case study was conducted for Sanya Bay of Hainan Island, China. Single-flame fine-resolution optical remote sensing imagery from QuickBird satellite was used to invert the bathymetry without external input parameters. The result of the digital elevation model (DEM) was evaluated against a sea chart with a scale of 1:25 000. The root-mean-square error of the inverted bathymetry was 1.07 m, and the relative error was 16.2%. Therefore, the proposed method has the advantages including no requirement for true depths and environmental parameters, and is feasible for mapping the bathymetry of shallow coastal water. 展开更多
关键词 BATHYMETRY optical remote sensing image NEARSHORE QUICKBIRD
下载PDF
A Method for Spaceborne Synthetic Remote Sensing of Atmospheric Aerosol Optical Depth and Vegetation Reflectance 被引量:6
14
作者 邱金桓 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第1期18-31,共14页
Spaceborne synthetic remote sensing of atmospheric aerosol optical depth and vegetation reflectance is very significant, but it remains to be a question unresolved yet. Based on the property of vegetation reflectance ... Spaceborne synthetic remote sensing of atmospheric aerosol optical depth and vegetation reflectance is very significant, but it remains to be a question unresolved yet. Based on the property of vegetation reflectance spectra from near ultra violet to near infrared and the sensitivity of outgoing radiance to vegetation reflectance and atmospheric aerosol optical depth, a new method for spaceborne synthetic remote sensing of the reflectance and the depth is proposed, and an iteration correlation inversion algorithm is developed in this paper. According to numerical experiment, effects of radiance error, error in aerosol imaginary index and vegetation medium inhomogeneity on retrieved result are analyzed. Inversion results show that the effect of error in aerosol imaginary index is very important. As the error of aerosol imaginary index is within 0.01, standard errors of aerosol optical depth and vegetation reflectance solutions for 14 spectral channels from 410 nm to 900 nm are respectively less than 0.063 and 0.023. And as the radiance error is within 2%, the standard errors are less than 0.023 and 0.0056. 展开更多
关键词 Vegetation reflectance Aerosol optical depth Spaceborne remote sensing Sky radiance
下载PDF
Multifunctional flexible optical waveguide sensor: on the bioinspiration for ultrasensitive sensors development 被引量:6
15
作者 Arnaldo Leal-Junior Leticia Avellar +3 位作者 Vitorino Biazi M.Simone Soares Anselmo Frizera Carlos Marques 《Opto-Electronic Advances》 SCIE EI CAS 2022年第10期1-11,共11页
This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspir... This paper presents the development of a bioinspired multifunctional flexible optical sensor(BioMFOS)as an ultrasensitive tool for force(intensity and location)and orientation sensing.The sensor structure is bioinspired in orb webs,which are multifunctional devices for prey capturing and vibration transmission.The multifunctional feature of the structure is achieved by using transparent resins that present both mechanical and optical properties for structural integrity and strain/deflection transmission as well as the optical signal transmission properties with core/cladding configuration of a waveguide.In this case,photocurable and polydimethylsiloxane(PDMS)resins are used for the core and cladding,respectively.The optical transmission,tensile tests,and dynamic mechanical analysis are performed in the resins and show the possibility of light transmission at the visible wavelength range in conjunction with high flexibility and a dynamic range up to 150 Hz,suitable for wearable applications.The BioMFOS has small dimensions(around 2 cm)and lightweight(0.8 g),making it suitable for wearable application and clothing integration.Characterization tests are performed in the structure by means of applying forces at different locations of the structure.The results show an ultra-high sensitivity and resolution,where forces in theμN range can be detected and the location of the applied force can also be detected with a sub-millimeter spatial resolution.Then,the BioMFOS is tested on the orientation detection in 3D plane,where a correlation coefficient higher than 0.9 is obtained when compared with a gold-standard inertial measurement unit(IMU).Furthermore,the device also shows its capabilities on the movement analysis and classification in two protocols:finger position detection(with the BioMFOS positioned on the top of the hand)and trunk orientation assessment(with the sensor integrated on the clothing).In both cases,the sensor is able of classifying the movement,especially when analyzed in conjunction with preprocessing and clustering techniques.As another wearable application,the respiratory rate is successfully estimated with the BioMFOS integrated into the clothing.Thus,the proposed multifunctional device opens new avenues for novel bioinspired photonic devices and can be used in many applications of biomedical,biomechanics,and micro/nanotechnology. 展开更多
关键词 optical sensors optical waveguides bioinspired design multifunctional structures wearable sensors
下载PDF
A two-scale approach for estimating forest aboveground biomass with optical remote sensing images in a subtropical forest of Nepal 被引量:2
16
作者 Upama A.Koju Jiahua Zhang +4 位作者 Shashish Maharjan Sha Zhang Yun Bai Dinesh B.I.P.Vijayakumar Fengmei Yao 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第6期2119-2136,共18页
Forests account for 80%of the total carbon exchange between the atmosphere and terrestrial ecosystems.Thus,to better manage our responses to global warming,it is important to monitor and assess forest aboveground carb... Forests account for 80%of the total carbon exchange between the atmosphere and terrestrial ecosystems.Thus,to better manage our responses to global warming,it is important to monitor and assess forest aboveground carbon and forest aboveground biomass(FAGB).Different levels of detail are needed to estimate FAGB at local,regional and national scales.Multi-scale remote sensing analysis from high,medium and coarse spatial resolution data,along with field sampling,is one approach often used.However,the methods developed are still time consuming,expensive,and inconvenient for systematic monitoring,especially for developing countries,as they require vast numbers of field samples for upscaling.Here,we recommend a convenient two-scale approach to estimate FAGB that was tested in our study sites.The study was conducted in the Chitwan district of Nepal using GeoEye-1(0.5 m),Landsat(30 m)and Google Earth very high resolution(GEVHR)Quickbird(0.65 m)images.For the local scale(Kayerkhola watershed),tree crowns of the area were delineated by the object-based image analysis technique on GeoEye images.An overall accuracy of 83%was obtained in the delineation of tree canopy cover(TCC)per plot.A TCC vs.FAGB model was developed based on the TCC estimations from GeoEye and FAGB measurements from field sample plots.A coefficient of determination(R2)of 0.76 was obtained in the modelling,and a value of 0.83 was obtained in the validation of the model.To upscale FAGB to the entire district,open source GEVHR images were used as virtual field plots.We delineated their TCC values and then calculated FAGB based on a TCC versus FAGB model.Using the multivariate adaptive regression splines machine learning algorithm,we developed a model from the relationship between the FAGB of GEVHR virtual plots with predictor parameters from Landsat 8 bands and vegetation indices.The model was then used to extrapolate FAGB to the entire district.This approach considerably reduced the need for field data and commercial very high resolution imagery while achieving two-scale forest information and FAGB estimates at high resolution(30 m)and accuracy(R2=0.76 and 0.7)with minimal error(RMSE=64 and 38 tons ha-1)at local and regional scales.This methodology is a promising technique for cost-effective FAGB and carbon estimations and can be replicated with limited resources and time.The method is especially applicable for developing countries that have low budgets for carbon estimations,and it is also applicable to the Reducing Emissions from Deforestation and Forest Degradation(REDD?)monitoring reporting and verification processes. 展开更多
关键词 FOREST ABOVEGROUND biomass Google Earth IMAGERY MULTI-SCALE remote sensing Virtual PLOT optical IMAGERY
下载PDF
Experimental investigation on the optical remote sensing images of internal solitary waves with a smooth surface 被引量:2
17
作者 Yuan Mei Jing Wang +2 位作者 Songsong Huang Haidi Mu Xu Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第6期124-131,共8页
The parameter inversion of internal solitary waves (ISWs) based on optical remote sensing images is a key work. A new approach is proposed and demonstrated for simulating the optical remote sensing images of ISWs with... The parameter inversion of internal solitary waves (ISWs) based on optical remote sensing images is a key work. A new approach is proposed and demonstrated for simulating the optical remote sensing images of ISWs with a smooth surface in the laboratory. An optical remote sensing simulation system used to detect ISWs is constructed by a two-dimensional ISW flume, a LED (light emitting diode) light source and two CCD (charge coupled device) cameras. The optical remote sensing images of the horizontal surface and ISWs propagation images of a vertical side are detected simultaneously, which aims to explore the response of optical remote sensing corresponding to ISWs with the smooth surface. The results show that during the propagation of ISWs, dark pattern images are obtained by CCD 1 camera. The characteristics of the dark patterns vary along with the incident angle of the light source. The characteristic parameters of the optical remote sensing images correspond to the wave factors of vertical profiles. The experiment also shows a positive correlation between the dark pattern width and the half wave width under different amplitudes of ISWs. The system has the advantages of clear phenomenon and high repeatability, which provides the scientific basis for quantitative investigation on imaging mechanism of ISW by optical remote sensing. 展开更多
关键词 internal SOLITARY WAVE optical remote sensing image DARK pattern HALF WAVE WIDTH WAVE factors
下载PDF
Remote structural health monitoring with serially multiplexed fiber optic acoustic emission sensors 被引量:2
18
作者 陈仲裕 梁玉进 Farhad Ansari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第1期141-146,共6页
Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points alo... Development and testing of a serially multiplexed fiber optic sensor system is described.The sensor differs from conventional fiber optic acoustic systems,as it is capable of sensing AE emissions at several points along the length of a single fiber.Multiplexing provides for single channel detection of cracks and their locations in large structural systems. An algorithm was developed for signal recognition and tagging of the AE waveforms for detection of' crack locations,Labora- tory experiments on plain concrete beams and post-tensioned FRP tendons were pcrlormed to evaluate the crack detection capability of the sensor system.The acoustic emission sensor was able to detect initiation,growth and location of the cracks in concrete as well as in the FRP tendons.The AE system is potentially suitable lot applications involving health monitoring of structures following an earthquake. 展开更多
关键词 acoustic emission crack detection concrete EARTHQUAKE fiber optic sensors FRP tendon MULTIPLEXING post seismic structural health monitoring
下载PDF
Influences of Atmospheric Turbulence on Image Resolution of Airborne and Space-Borne Optical Remote Sensing System 被引量:2
19
作者 张晓芳 俞信 阎吉祥 《Journal of Beijing Institute of Technology》 EI CAS 2006年第4期457-461,共5页
A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, s... A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields. 展开更多
关键词 atmospheric turbulence coherence length arrival angle-method airborne or space-borne optical remote sensing system image resolution
下载PDF
Loading Localization by Small-Diameter Optical Fiber Sensors 被引量:1
20
作者 Liu Rongmei Zhu Lujia +1 位作者 Lu Jiyun Liang Dakai 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第2期275-281,共7页
Structural health monitoring(SHM)in service has attracted increasing attention for years.Load localization on a structure is studied hereby.Two algorithms,i.e.,support vector machine(SVM)method and back propagation ne... Structural health monitoring(SHM)in service has attracted increasing attention for years.Load localization on a structure is studied hereby.Two algorithms,i.e.,support vector machine(SVM)method and back propagation neural network(BPNN)algorithm,are proposed to identify the loading positions individually.The feasibility of the suggested methods is evaluated through an experimental program on a carbon fiber reinforced plastic laminate.The experimental tests involve in application of four optical fiber-based sensors for strain measurement at discrete points.The sensors are specially designed fiber Bragg grating(FBG)in small diameter.The small-diameter FBG sensors are arrayed in 2-D on the laminate surface.The testing results indicate that the loading position could be detected by the proposed method.Using SVM method,the 2-D FBG sensors can approximate the loading location with maximum error less than 14 mm.However,the maximum localization error could be limited to about 1 mm by applying the BPNN algorithm.It is mainly because the convergence conditions(mean square error)can be set in advance,while SVM cannot. 展开更多
关键词 SMALL DIAMETER optical fiber sensor structural health monitoring LOADING LOCALIZATION BACK propagation neural network support VECTOR machine
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部