期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry 被引量:1
1
作者 Chunyan Chu Zhentao Liu +4 位作者 Mingliang Chen Xuehui Shao Guohai Situ Yuejin Zhao Shensheng Han 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第12期27-35,共9页
High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional... High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths.Optical aperture synthesis is an important high-resolution imaging technology used in astronomy.Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations,and the technical difficulty increases rapidly as the wavelength decreases.The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations,but suffers from a narrow spectral bandwidth which results in a lack of effective photons.In this study,we propose optical synthetic aperture imaging based on spatial intensity interferometry.This not only realizes diffraction-limited optical aperture synthesis in a single shot,but also enables imaging with a wide spectral bandwidth,which greatly improves the optical energy efficiency of intensity interferometry.And this method is insensitive to the optical path difference between the sub-apertures.Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light,whose maximum optical path difference between the sub-apertures reaches 69λ.This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths. 展开更多
关键词 optical synthetic aperture imaging ghost imaging intensity interferometry
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部