We demonstrate a distributed optical fiber sensing system based on the Michelson interferometer of the phase sensitive optical time domain reflectometer (q0-OTDR) for acoustic measurement. Phase, amplitude, frequenc...We demonstrate a distributed optical fiber sensing system based on the Michelson interferometer of the phase sensitive optical time domain reflectometer (q0-OTDR) for acoustic measurement. Phase, amplitude, frequency response, and location information can be directly obtained at the same time by using the passive 3 ×3 coupler demodulation. We also set an experiment and successfully restore the acoustic information. Meanwhile, our system has preliminary realized acoustic-phase sensitivity around -150 dB (re rad/μPa) in the experiment.展开更多
A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement dista...A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.展开更多
A quasi-distributed Fabry-Perot fiber optic temperature sensor array using optical time domain reflectometry (OTDR) technique is presented. The F-P sensor is made by two face to face single-mode optical fibers and t...A quasi-distributed Fabry-Perot fiber optic temperature sensor array using optical time domain reflectometry (OTDR) technique is presented. The F-P sensor is made by two face to face single-mode optical fibers and their surfaces have been polished. Due to the low reflectivity of the fiber surfaces, the sensor is described as low Fresnel Fabry-Perot interferometer (FPI). The working principle is analyzed using twobeam optical interference approximation. To measure the temperature, a certain temperature sensitive material is filled in the cavity. The slight changes of the reflective intensity which is induced by the refractive index of the material was caught by OTDR. The length of the cavity is obtained by monitoring the interference spectrum which is used for the setting of the sensor static characteristics within the quasi-linear range. Based on our design, a three point sensor array are fabricated and characterized. The experimental results show that with the temperature increasing from -30℃ to 80℃, the reflectivity increase in a good linear manner. The sensitivity was approximate 0.074 dB℃. For the low transmission loss, more sensors can be integrated.展开更多
光纤通信网络作为现代信息传输的重要基础设施,其稳定性和可靠性直接关系到网络的整体性能。光缆终端盒作为光纤网络的关键节点,故障不仅会导致通信中断,而且可能引发严重的经济损失。通过研究光缆终端盒的常见故障类型和成因,探讨多种...光纤通信网络作为现代信息传输的重要基础设施,其稳定性和可靠性直接关系到网络的整体性能。光缆终端盒作为光纤网络的关键节点,故障不仅会导致通信中断,而且可能引发严重的经济损失。通过研究光缆终端盒的常见故障类型和成因,探讨多种故障诊断技术,包括光时域反射仪(Optical Time Domain Reflectometer,OTDR)、光功率监测技术以及可视化光缆测试仪,以提升故障诊断准确性和效率。展开更多
基金This work was supported by the Shandong Natural Science Foundation (No. ZR2013FL028), Science and Technology Development Project of Shandong Province (2014GGX 103019), and Innovation and Achievement Transformation Projects of Shandong Province (2014ZZCX04206).
文摘We demonstrate a distributed optical fiber sensing system based on the Michelson interferometer of the phase sensitive optical time domain reflectometer (q0-OTDR) for acoustic measurement. Phase, amplitude, frequency response, and location information can be directly obtained at the same time by using the passive 3 ×3 coupler demodulation. We also set an experiment and successfully restore the acoustic information. Meanwhile, our system has preliminary realized acoustic-phase sensitivity around -150 dB (re rad/μPa) in the experiment.
文摘A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other facilities, and can be integrated with wireless networks.
基金funded by the National Natural Science Foundation of China under Grant No. 60677031 and 60577043the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20060280001+1 种基金Shanghai Education Commission under Grant No. 06AZ032, Chenguang Program under Grant No. 2007CG54Science and Technology Commission of Shanghai Municipality (STCSM) under Grant No. 07DZ22024 and 075307017
文摘A quasi-distributed Fabry-Perot fiber optic temperature sensor array using optical time domain reflectometry (OTDR) technique is presented. The F-P sensor is made by two face to face single-mode optical fibers and their surfaces have been polished. Due to the low reflectivity of the fiber surfaces, the sensor is described as low Fresnel Fabry-Perot interferometer (FPI). The working principle is analyzed using twobeam optical interference approximation. To measure the temperature, a certain temperature sensitive material is filled in the cavity. The slight changes of the reflective intensity which is induced by the refractive index of the material was caught by OTDR. The length of the cavity is obtained by monitoring the interference spectrum which is used for the setting of the sensor static characteristics within the quasi-linear range. Based on our design, a three point sensor array are fabricated and characterized. The experimental results show that with the temperature increasing from -30℃ to 80℃, the reflectivity increase in a good linear manner. The sensitivity was approximate 0.074 dB℃. For the low transmission loss, more sensors can be integrated.
文摘光纤通信网络作为现代信息传输的重要基础设施,其稳定性和可靠性直接关系到网络的整体性能。光缆终端盒作为光纤网络的关键节点,故障不仅会导致通信中断,而且可能引发严重的经济损失。通过研究光缆终端盒的常见故障类型和成因,探讨多种故障诊断技术,包括光时域反射仪(Optical Time Domain Reflectometer,OTDR)、光功率监测技术以及可视化光缆测试仪,以提升故障诊断准确性和效率。