To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these me...To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.展开更多
BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic im...BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.展开更多
The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium(ISM).However,there is a lack of corresponding experimental data and mode...The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium(ISM).However,there is a lack of corresponding experimental data and model theories.By theoretical calculations based on ab-initio method,we have predicted and geometry optimized the structures of Carbon-rich(C-rich)dusts,carbon(^(12)C),iron carbide(Fe C),silicon carbide(Si C),even silicon(^(28)Si),iron(^(56)Fe),and investigated the optical absorption coefficients and emission coefficients of these materials in 0D(zero-dimensional),1D,and 2D nanostructures.Comparing the nebular spectra of the supernovae(SN)with the coefficient of dust,we find that the optical absorption coefficient of the 2D^(12)C,^(28)Si,^(56)Fe,Si C and Fe C structure corresponds to the absorption peak displayed in the infrared band(5–8)μm of the spectrum at 7554 days after the SN1987A explosion.It also corresponds to the spectrum of 535 days after the explosion of SN2018bsz,when the wavelength was in the range of(0.2–0.8)and(3–10)μm.Nevertheless,2D Si C and Fe C correspond to the spectrum of 844 days after the explosion of SN2010jl,when the wavelength is within(0.08–10)μm.Therefore,Fe C and Si C may be the second type of dust in SN1987A corresponding to infrared band(5–8)μm of dust and may be in the ejecta of SN2010jl and SN2018bsz.The nano-scale C-rich dust size is~0.1 nm in SN2018bsz,which is 3 orders of magnitude lower than the value of 0.1μm.In addition,due to the ionization reaction in the supernova remnant(SNR),we also calculated the Infrared Radiation(IR)spectrum of dust cations.We find that the cation of the 2D layered(Si C)^(2+)has a higher IR spectrum than those of the cation(Si C)^(1+)and neutral(Si C)^(0+).展开更多
In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical...In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.展开更多
Can pulsar-like compact objects release further huge free energy besides the kinematic energy of rotation?This is actually relevant to the equation of state of cold supra-nuclear matter,which is still under hot debate...Can pulsar-like compact objects release further huge free energy besides the kinematic energy of rotation?This is actually relevant to the equation of state of cold supra-nuclear matter,which is still under hot debate.Enormous energy is surely needed to understand various observations,such asγ-ray bursts,fast radio bursts and softγ-ray repeaters.In this paper,the elastic/gravitational free energy of solid strangeon stars is revisited for strangeon stars,with two anisotropic models to calculate in general relativity.It is found that huge free energy(>10^(46)erg)could be released via starquakes,given an extremely small anisotropy((p_(t)-p_(r))/p_(r)~10^(-4),with pt/pr the tangential/radial pressure),implying that pulsar-like stars could have great potential of free energy release without extremely strong magnetic fields in the solid strangeon star model.展开更多
AIM:To compare superficial and deep vascular properties of optic discs between crowded discs and controls using optical coherence tomography angiography(OCT-A).METHODS:Thirty patients with crowded discs,and 47 control...AIM:To compare superficial and deep vascular properties of optic discs between crowded discs and controls using optical coherence tomography angiography(OCT-A).METHODS:Thirty patients with crowded discs,and 47 control subjects were enrolled in the study.One eye of each individual was included and OCT-A scans of optic discs were obtained in a 4.5×4.5 mm^(2) rectangular area.Radial peripapillary capillary(RPC)density,peripapillary retinal nerve fiber layer(pRNFL)thickness,cup volume,rim area,disc area,cup-to-disc(c/d)area ratio,and vertical c/d ratio were obtained automatically using device software.Automated parapapillary choroidal microvasculature(PPCMv)density was calculated using MATLAB software.When the vertical c/d ratio of the optic disc was absent or small cup,it was considered as a crowded disc.RESULTS:The mean signal strength index of OCT-A images was similar between the crowded discs and control eyes(P=0.740).There was no difference in pRNFL between the two groups(P=0.102).There were no differences in RPC density in whole image(P=0.826)and peripapillary region(P=0.923),but inside disc RPC density was higher in crowded optic discs(P=0.003).The PPCMv density in the inner-hemisuperior region was also lower in crowded discs(P=0.026).The pRNFL thickness was positively correlated with peripapillary RPC density(r=0.498,P<0.001).The inside disc RPC density was negatively correlated with c/d area ratio(r=-0.341,P=0.002).CONCLUSION:The higher inside disc RPC density and lower inner-hemisuperior PPCMv density are found in eyes with crowded optic discs.展开更多
We present optical and infrared photometric and spectroscopic studies of two Be stars in the 70-80-Myr-old open cluster NGC 6834. NGC 6834(1) has been reported as a binary from speckle interferometric studies wherea...We present optical and infrared photometric and spectroscopic studies of two Be stars in the 70-80-Myr-old open cluster NGC 6834. NGC 6834(1) has been reported as a binary from speckle interferometric studies whereas NGC 6834(2) may possibly be a γ Cas-like variable. Infrared photometry and spectroscopy from the United Kingdom Infrared Telescope (UKIRT), and optical data from various facilities are combined with archival data to understand the nature of these candidates. High signal-to-noise near-IR spectra obtained from UKIRT have enabled us to study the optical depth effects in the hydrogen emission lines of these stars. We have explored the spectral classification scheme based on the intensity of emission lines in the H and K bands and contrasted it with the conventional classification based on the intensity of hydrogen and helium absorption lines. This work also presents hitherto unavailable UBV CCD photometry of NGC 6834, from which the evolutionary state of the Be stars is identified.展开更多
AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-thre...AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-three healthy subjects were enrolled.The ONH of both eyes were imaged four times by a swept-source-OCTA using a 3 mm×3 mm scanning protocol.Images of the radial peripapillary capillary were analyzed by a customized Matlab program,and the vessel density,fractal dimension,and vessel diameter index were measured.The repeatability of the four scans was determined by the intraclass correlation coefficient(ICC).The most well-centered optic disc from the four repeated scans was then selected for the interocular correlation and agreement analysis using the Pearson correlation coefficient,ICC and Bland-Altman plots.RESULTS:All swept-source-OCTA ONH parameters exhibited certain repeatability,with ICC>0.760 and coefficient of variation(CoV)≤7.301%.The obvious interocular correlation was observed for papillary vessel density(ICC=0.857),vessel diameter index(ICC=0.857)and fractal dimension(ICC=0.906),while circumpapillary vessel density exhibited moderate interocular correlation(ICC=0.687).Bland-Altman plots revealed an agreement range of-5.26%to 6.21%for circumpapillary vessel density.CONCLUSION:OCTA ONH parameters demonstrate good repeatability in healthy subjects.The interocular correlations of papillary vessel density,fractal dimension and vessel diameter index are high,but the correlation for circumpapillary vessel density is moderate.展开更多
Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts ...Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.展开更多
Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since...Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.展开更多
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
There is a certain failure rate in traditional glaucoma surgery because of the lack of depth information in microscope images.In this work,we present a digital microscope-integrated optical coherence tomography(MIOCT)...There is a certain failure rate in traditional glaucoma surgery because of the lack of depth information in microscope images.In this work,we present a digital microscope-integrated optical coherence tomography(MIOCT)system and several custom-made OCT-compatible instruments for glaucoma surgery.Sixteen ophthalmologists were asked to perform trabeculectomy and canaloplasty on live porcine eyes using the system and instruments.After surgery,a subjective feedback survey about the user experience was taken.The experiment results showed that our system can help surgeons easily locate important tissue structures during surgery.The custom-made instruments also solved the shadowing problem in OCT imaging.Surgeons preferred to use the system in their future practice.展开更多
The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which ...The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.展开更多
AIM:To evaluate the relationship of overweight and obesity with retinal and choroidal thickness in adults without ocular symptoms by swept-source optical coherence tomography(SS-OCT).METHODS:According to the body mass...AIM:To evaluate the relationship of overweight and obesity with retinal and choroidal thickness in adults without ocular symptoms by swept-source optical coherence tomography(SS-OCT).METHODS:According to the body mass index(BMI)results,the adults enrolled in the cross-sectional study were divided into the normal group(18.50≤BMI<25.00 kg/m^(2)),the overweight group(25.00≤BMI<30.00 kg/m^(2)),and the obesity group(BMI≥30.00 kg/m^(2)).The one-way ANOVA and the Chi-square test were used for comparisons.Pearson’s correlation analysis was used to evaluate the relationships between the measured variables.RESULTS:This research covered the left eyes of 3 groups of 434 age-and sex-matched subjects each:normal,overweight,and obesity.The mean BMI was 22.20±1.67,26.82±1.38,and 32.21±2.35 kg/m^(2) in normal,overweight and obesity groups,respectively.The choroid was significantly thinner in both the overweight and obesity groups compared to the normal group(P<0.05 for all),while the retinal thickness of the three groups did not differ significantly.Pearson’s correlation analysis showed that BMI was significantly negatively correlated with choroidal thickness,but no significant correlation was observed between BMI and retinal thickness.CONCLUSION:Choroidal thickness is decreased in people with overweight or obesity.Research on changes in choroidal thickness contributes to the understanding of the mechanisms of certain ocular disorders in overweight and obese adults.展开更多
X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing pro...X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.展开更多
Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatm...Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed.展开更多
AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of...AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of normal controls.METHODS:This study included 37 patients with unilateral APAC,37 with asymmetric CPACG without prior treatment,and 36 healthy participants.Using swept-source optical coherence tomography(SS-OCT),the macular and peripapillary choroidal thickness and three-dimensional CVI were measured and compared globally and sectorally.Pearson’s correlation analysis and multivariate regression models were used to evaluate choroidal thickness or CVI with related factors.RESULTS:The mean subfoveal CVIs were 0.35±0.10,0.33±0.09,and 0.29±0.04,and the mean subfoveal choroidal thickness were 315.62±52.92,306.22±59.29,and 262.69±45.55μm in the F-APAC,F-CPACG,and normal groups,respectively.All macular sectors showed significantly higher CVIs and choroidal thickness in the F-APAC and F-CPACG eyes than in the normal eyes(P<0.05),while there were no significant differences between the F-APAC and F-CPACG eyes.In the peripapillary region,the mean overall CVIs were 0.21±0.08,0.20±0.08,and 0.19±0.05,and the mean overall choroidal thickness were 180.45±54.18,174.82±50.67,and 176.18±37.94μm in the F-APAC,F-CPACG,and normal groups,respectively.There were no significant differences between any of the two groups in all peripapillary sectors.Younger age,shorter axial length,and the F-APAC or F-CPACG diagnosis were significantly associated with higher subfoveal CVI and thicker subfoveal choroidal thickness(P<0.05).CONCLUSION:The fellow eyes of unilateral APAC or asymmetric CPACG have higher macular CVI and choroidal thickness than those of the normal controls.Neither CVI nor choroidal thickness can distinguish between eyes predisposed to APAC or CPACG.A thicker choroid with a higher vascular volume may play a role in the pathogenesis of primary angle-closure glaucoma.展开更多
We present optical spectra of 10 Galactic Wolf-Rayet(WR)stars that consist of five WN and five WC stars.The optical observation was conducted using a low-resolution spectrograph NEO-R1000(λ/Δλ~1000)at GAO-ITB RTS(2...We present optical spectra of 10 Galactic Wolf-Rayet(WR)stars that consist of five WN and five WC stars.The optical observation was conducted using a low-resolution spectrograph NEO-R1000(λ/Δλ~1000)at GAO-ITB RTS(27.94 cm,F/10.0),Bosscha Observatory,Lembang.We implemented stellar atmosphere Postdam Wolf-Rayet(PoWR)grid modeling to derive stellar parameters.The normalized optical spectrum can be used to find the best model from the available PoWR grid,then we could derive stellar temperature and transformation radius.To derive luminosity,stellar radius and color excess,we conducted a Spectral Energy Distribution(SED)analysis with additional data on the near-ultraviolet spectrum from the International Ultraviolet Explorer(IUE)database,and UBV and 2MASS JHK broadband filter data.Additional analysis to derive asymptotic terminal wind velocity was conducted from the P-Cygni profile analysis of the high-resolution IUE ultraviolet spectrum.With previously derived parameters,we could determine the mass loss rate of the WR stars.Furthermore,we compared our results with previous work that used PoWR code and the differences are not more than 20%.We conclude that the PoWR spectral grid is sufficient to derive WR stellar parameters quickly and could provide more accurate initial parameter input to the PoWR program code.展开更多
In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary ...In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.展开更多
We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as l...We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.展开更多
基金supported by University of Macao,China,Nos.MYRG2022-00054-FHS and MYRG-GRG2023-00038-FHS-UMDF(to ZY)the Macao Science and Technology Development Fund,China,Nos.FDCT0048/2021/AGJ and FDCT0020/2019/AMJ and FDCT 0011/2018/A1(to ZY)Natural Science Foundation of Guangdong Province of China,No.EF017/FHS-YZ/2021/GDSTC(to ZY)。
文摘To investigate the mechanisms underlying the onset and progression of ischemic stroke,some methods have been proposed that can simultaneously monitor and create embolisms in the animal cerebral cortex.However,these methods often require complex systems and the effect of age on cerebral embolism has not been adequately studied,although ischemic stroke is strongly age-related.In this study,we propose an optical-resolution photoacoustic microscopy-based visualized photothrombosis methodology to create and monitor ischemic stroke in mice simultaneously using a 532 nm pulsed laser.We observed the molding process in mice of different ages and presented age-dependent vascular embolism differentiation.Moreover,we integrated optical coherence tomography angiography to investigate age-associated trends in cerebrovascular variability following a stroke.Our imaging data and quantitative analyses underscore the differential cerebrovascular responses to stroke in mice of different ages,thereby highlighting the technique's potential for evaluating cerebrovascular health and unraveling age-related mechanisms involved in ischemic strokes.
文摘BACKGROUND Atypical optic neuritis,consisting of neuromyelitis optica spectrum disorders(NMOSD)or myelin oligodendrocyte glycoprotein antibody disease(MOGAD),has a very similar presentation but different prognostic implications and longterm management strategies.Vascular and metabolic factors are being thought to play a role in such autoimmune neuro-inflammatory disorders,apart from the obvious immune mediated damage.With the advent of optical coherence tomography angiography(OCTA),it is easy to pick up on these subclinical macular microvascular and structural changes.AIM To study the macular microvascular and structural changes on OCTA in atypical optic neuritis.METHODS This observational cross-sectional study involved 8 NMOSD and 17 MOGAD patients,diagnosed serologically,as well as 10 healthy controls.Macular vascular density(MVD)and ganglion cell+inner plexiform layer thickness(GCIPL)were studied using OCTA.RESULTS There was a significant reduction in MVD in NMOSD and MOGAD affected as well as unaffected eyes when compared with healthy controls.NMOSD and MOGAD affected eyes had significant GCIPL thinning compared with healthy controls.NMOSD unaffected eyes did not show significant GCIPL thinning compared to healthy controls in contrast to MOGAD unaffected eyes.On comparing NMOSD with MOGAD,there was no significant difference in terms of MVD or GCIPL in the affected or unaffected eyes.CONCLUSION Although significant microvascular and structural changes are present on OCTA between atypical optic neuritis and normal patients,they could not help in differentiating between NMOSD and MOGAD cases.
基金Supported by the National Natural Science Foundation of China。
文摘The composition and structure of interstellar dust are important and complex for the study of the evolution of stars and the interstellar medium(ISM).However,there is a lack of corresponding experimental data and model theories.By theoretical calculations based on ab-initio method,we have predicted and geometry optimized the structures of Carbon-rich(C-rich)dusts,carbon(^(12)C),iron carbide(Fe C),silicon carbide(Si C),even silicon(^(28)Si),iron(^(56)Fe),and investigated the optical absorption coefficients and emission coefficients of these materials in 0D(zero-dimensional),1D,and 2D nanostructures.Comparing the nebular spectra of the supernovae(SN)with the coefficient of dust,we find that the optical absorption coefficient of the 2D^(12)C,^(28)Si,^(56)Fe,Si C and Fe C structure corresponds to the absorption peak displayed in the infrared band(5–8)μm of the spectrum at 7554 days after the SN1987A explosion.It also corresponds to the spectrum of 535 days after the explosion of SN2018bsz,when the wavelength was in the range of(0.2–0.8)and(3–10)μm.Nevertheless,2D Si C and Fe C correspond to the spectrum of 844 days after the explosion of SN2010jl,when the wavelength is within(0.08–10)μm.Therefore,Fe C and Si C may be the second type of dust in SN1987A corresponding to infrared band(5–8)μm of dust and may be in the ejecta of SN2010jl and SN2018bsz.The nano-scale C-rich dust size is~0.1 nm in SN2018bsz,which is 3 orders of magnitude lower than the value of 0.1μm.In addition,due to the ionization reaction in the supernova remnant(SNR),we also calculated the Infrared Radiation(IR)spectrum of dust cations.We find that the cation of the 2D layered(Si C)^(2+)has a higher IR spectrum than those of the cation(Si C)^(1+)and neutral(Si C)^(0+).
基金supported by the National Natural Science Foundation of China(NSFC)(62125503,62261160388)the Natural Science Foundation of Hubei Province of China(2023AFA028)the Innovation Project of Optics Valley Laboratory(OVL2021BG004).
文摘In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips.
基金supported by the National SKA Program of China(2020SKA0120100)supported by NSFC grant No.12203017。
文摘Can pulsar-like compact objects release further huge free energy besides the kinematic energy of rotation?This is actually relevant to the equation of state of cold supra-nuclear matter,which is still under hot debate.Enormous energy is surely needed to understand various observations,such asγ-ray bursts,fast radio bursts and softγ-ray repeaters.In this paper,the elastic/gravitational free energy of solid strangeon stars is revisited for strangeon stars,with two anisotropic models to calculate in general relativity.It is found that huge free energy(>10^(46)erg)could be released via starquakes,given an extremely small anisotropy((p_(t)-p_(r))/p_(r)~10^(-4),with pt/pr the tangential/radial pressure),implying that pulsar-like stars could have great potential of free energy release without extremely strong magnetic fields in the solid strangeon star model.
文摘AIM:To compare superficial and deep vascular properties of optic discs between crowded discs and controls using optical coherence tomography angiography(OCT-A).METHODS:Thirty patients with crowded discs,and 47 control subjects were enrolled in the study.One eye of each individual was included and OCT-A scans of optic discs were obtained in a 4.5×4.5 mm^(2) rectangular area.Radial peripapillary capillary(RPC)density,peripapillary retinal nerve fiber layer(pRNFL)thickness,cup volume,rim area,disc area,cup-to-disc(c/d)area ratio,and vertical c/d ratio were obtained automatically using device software.Automated parapapillary choroidal microvasculature(PPCMv)density was calculated using MATLAB software.When the vertical c/d ratio of the optic disc was absent or small cup,it was considered as a crowded disc.RESULTS:The mean signal strength index of OCT-A images was similar between the crowded discs and control eyes(P=0.740).There was no difference in pRNFL between the two groups(P=0.102).There were no differences in RPC density in whole image(P=0.826)and peripapillary region(P=0.923),but inside disc RPC density was higher in crowded optic discs(P=0.003).The PPCMv density in the inner-hemisuperior region was also lower in crowded discs(P=0.026).The pRNFL thickness was positively correlated with peripapillary RPC density(r=0.498,P<0.001).The inside disc RPC density was negatively correlated with c/d area ratio(r=-0.341,P=0.002).CONCLUSION:The higher inside disc RPC density and lower inner-hemisuperior PPCMv density are found in eyes with crowded optic discs.
基金the Physical Research Laboratory is funded by the Department of Space, Government of India
文摘We present optical and infrared photometric and spectroscopic studies of two Be stars in the 70-80-Myr-old open cluster NGC 6834. NGC 6834(1) has been reported as a binary from speckle interferometric studies whereas NGC 6834(2) may possibly be a γ Cas-like variable. Infrared photometry and spectroscopy from the United Kingdom Infrared Telescope (UKIRT), and optical data from various facilities are combined with archival data to understand the nature of these candidates. High signal-to-noise near-IR spectra obtained from UKIRT have enabled us to study the optical depth effects in the hydrogen emission lines of these stars. We have explored the spectral classification scheme based on the intensity of emission lines in the H and K bands and contrasted it with the conventional classification based on the intensity of hydrogen and helium absorption lines. This work also presents hitherto unavailable UBV CCD photometry of NGC 6834, from which the evolutionary state of the Be stars is identified.
基金Natural Science Foundation of Guangdong Province(No.2018A0303130306)Shantou Science and Technology Program(No.190917085269835,No.200629165261641).
文摘AIM:To assess the repeatability,interocular correlation,and agreement of quantitative swept-source optical coherence tomography angiography(OCTA)optic nerve head(ONH)parameters in healthy subjects.METHODS:Thir ty-three healthy subjects were enrolled.The ONH of both eyes were imaged four times by a swept-source-OCTA using a 3 mm×3 mm scanning protocol.Images of the radial peripapillary capillary were analyzed by a customized Matlab program,and the vessel density,fractal dimension,and vessel diameter index were measured.The repeatability of the four scans was determined by the intraclass correlation coefficient(ICC).The most well-centered optic disc from the four repeated scans was then selected for the interocular correlation and agreement analysis using the Pearson correlation coefficient,ICC and Bland-Altman plots.RESULTS:All swept-source-OCTA ONH parameters exhibited certain repeatability,with ICC>0.760 and coefficient of variation(CoV)≤7.301%.The obvious interocular correlation was observed for papillary vessel density(ICC=0.857),vessel diameter index(ICC=0.857)and fractal dimension(ICC=0.906),while circumpapillary vessel density exhibited moderate interocular correlation(ICC=0.687).Bland-Altman plots revealed an agreement range of-5.26%to 6.21%for circumpapillary vessel density.CONCLUSION:OCTA ONH parameters demonstrate good repeatability in healthy subjects.The interocular correlations of papillary vessel density,fractal dimension and vessel diameter index are high,but the correlation for circumpapillary vessel density is moderate.
基金supported by the National Natural Science Foundation of China(62375144 and 61875092)Tianjin Foundation of Natural Science(21JCYBJC00260)Beijing-Tianjin-Hebei Basic Research Cooperation Special Program(19JCZDJC65300).
文摘Limited by the dynamic range of the detector,saturation artifacts usually occur in optical coherence tomography(OCT)imaging for high scattering media.The available methods are difficult to remove saturation artifacts and restore texture completely in OCT images.We proposed a deep learning-based inpainting method of saturation artifacts in this paper.The generation mechanism of saturation artifacts was analyzed,and experimental and simulated datasets were built based on the mechanism.Enhanced super-resolution generative adversarial networks were trained by the clear–saturated phantom image pairs.The perfect reconstructed results of experimental zebrafish and thyroid OCT images proved its feasibility,strong generalization,and robustness.
基金support from the National Natural Science Foundation of China (No.62005164,62222507,62175101,and 62005166)the Shanghai Natural Science Foundation (23ZR1443700)+3 种基金Shuguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission (23SG41)the Young Elite Scientist Sponsorship Program by CAST (No.20220042)Science and Technology Commission of Shanghai Municipality (Grant No.21DZ1100500)the Shanghai Municipal Science and Technology Major Project,and the Shanghai Frontiers Science Center Program (2021-2025 No.20).
文摘Secret sharing is a promising technology for information encryption by splitting the secret information into different shares.However,the traditional scheme suffers from information leakage in decryption process since the amount of available information channels is limited.Herein,we propose and demonstrate an optical secret sharing framework based on the multi-dimensional multiplexing liquid crystal(LC)holograms.The LC holograms are used as spatially separated shares to carry secret images.The polarization of the incident light and the distance between different shares are served as secret keys,which can significantly improve the information security and capacity.Besides,the decryption condition is also restricted by the applied external voltage due to the variant diffraction efficiency,which further increases the information security.In implementation,an artificial neural network(ANN)model is developed to carefully design the phase distribution of each LC hologram.With the advantage of high security,high capacity and simple configuration,our optical secret sharing framework has great potentials in optical encryption and dynamic holographic display.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金support of the foundations:National Key R&D Program of China,Grant Nos.2022YFC2404201CAS Project for Young Scientists in Basic Research,Grant Nos.YSBR-067+2 种基金The Gusu Innovation and Entrepreneurship Leading Talents in Suzhou City,Grant Nos.ZXL2021425Jiangsu Science and Technology Plan Program,Grant Nos.BK20220263National Key R&D Program of China,Grant Nos.2021YFF0700503.
文摘There is a certain failure rate in traditional glaucoma surgery because of the lack of depth information in microscope images.In this work,we present a digital microscope-integrated optical coherence tomography(MIOCT)system and several custom-made OCT-compatible instruments for glaucoma surgery.Sixteen ophthalmologists were asked to perform trabeculectomy and canaloplasty on live porcine eyes using the system and instruments.After surgery,a subjective feedback survey about the user experience was taken.The experiment results showed that our system can help surgeons easily locate important tissue structures during surgery.The custom-made instruments also solved the shadowing problem in OCT imaging.Surgeons preferred to use the system in their future practice.
基金Project supported in part by the National Key Research and Development Program of China(Grant No.2021YFB2206504)the National Natural Science Foundation of China(Grant No.62235017)the China Postdoctoral Science Foundation(Grant No.2021M703125).
文摘The performance of optical interconnection has improved dramatically in recent years.Silicon-based optoelectronic heterogeneous integration is the key enabler to achieve high performance optical interconnection,which not only provides the optical gain which is absent from native Si substrates and enables complete photonic functionalities on chip,but also improves the system performance through advanced heterogeneous integrated packaging.This paper reviews recent progress of silicon-based optoelectronic heterogeneous integration in high performance optical interconnection.The research status,development trend and application of ultra-low loss optical waveguides,high-speed detectors,high-speed modulators,lasers and 2D,2.5D,3D and monolithic integration are focused on.
基金Supported by the Science and Technology Commission of Shanghai Municipality(No.20Y11910800).
文摘AIM:To evaluate the relationship of overweight and obesity with retinal and choroidal thickness in adults without ocular symptoms by swept-source optical coherence tomography(SS-OCT).METHODS:According to the body mass index(BMI)results,the adults enrolled in the cross-sectional study were divided into the normal group(18.50≤BMI<25.00 kg/m^(2)),the overweight group(25.00≤BMI<30.00 kg/m^(2)),and the obesity group(BMI≥30.00 kg/m^(2)).The one-way ANOVA and the Chi-square test were used for comparisons.Pearson’s correlation analysis was used to evaluate the relationships between the measured variables.RESULTS:This research covered the left eyes of 3 groups of 434 age-and sex-matched subjects each:normal,overweight,and obesity.The mean BMI was 22.20±1.67,26.82±1.38,and 32.21±2.35 kg/m^(2) in normal,overweight and obesity groups,respectively.The choroid was significantly thinner in both the overweight and obesity groups compared to the normal group(P<0.05 for all),while the retinal thickness of the three groups did not differ significantly.Pearson’s correlation analysis showed that BMI was significantly negatively correlated with choroidal thickness,but no significant correlation was observed between BMI and retinal thickness.CONCLUSION:Choroidal thickness is decreased in people with overweight or obesity.Research on changes in choroidal thickness contributes to the understanding of the mechanisms of certain ocular disorders in overweight and obese adults.
基金supported by the National Natural Science Foundation of China (NSFC, GrantNos. 10935001 and 10973002)the National Basic Research Program of China (973 Program, Grant No. 2009CB824800)the John Templeton Foundation
文摘X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.
基金supported by National Natural Science Foundation of China(62135007 and 61925502).
文摘Optical endoscopy has become an essential diagnostic and therapeutic approach in modern biomedicine for directly observing organs and tissues deep inside the human body,enabling non-invasive,rapid diagnosis and treatment.Optical fiber endoscopy is highly competitive among various endoscopic imaging techniques due to its high flexibility,compact structure,excellent resolution,and resistance to electromagnetic interference.Over the past decade,endoscopes based on a single multimode optical fiber(MMF)have attracted widespread research interest due to their potential to significantly reduce the footprint of optical fiber endoscopes and enhance imaging capabilities.In comparison with other imaging principles of MMF endoscopes,the scanning imaging method based on the wavefront shaping technique is highly developed and provides benefits including excellent imaging contrast,broad applicability to complex imaging scenarios,and good compatibility with various well-established scanning imaging modalities.In this review,various technical routes to achieve light focusing through MMF and procedures to conduct the scanning imaging of MMF endoscopes are introduced.The advancements in imaging performance enhancements,integrations of various imaging modalities with MMF scanning endoscopes,and applications are summarized.Challenges specific to this endoscopic imaging technology are analyzed,and potential remedies and avenues for future developments are discussed.
基金Supported by the National Natural Science Foundation of China(No.82101087)Shanghai Clinical Research Key Project(No.SHDC2020CR6029).
文摘AIM:To compare the three-dimensional choroidal vascularity index(CVI)and choroidal thickness between fellow eyes of acute primary angle-closure(F-APAC)and chronic primary angle-closure glaucoma(F-CPACG)and the eyes of normal controls.METHODS:This study included 37 patients with unilateral APAC,37 with asymmetric CPACG without prior treatment,and 36 healthy participants.Using swept-source optical coherence tomography(SS-OCT),the macular and peripapillary choroidal thickness and three-dimensional CVI were measured and compared globally and sectorally.Pearson’s correlation analysis and multivariate regression models were used to evaluate choroidal thickness or CVI with related factors.RESULTS:The mean subfoveal CVIs were 0.35±0.10,0.33±0.09,and 0.29±0.04,and the mean subfoveal choroidal thickness were 315.62±52.92,306.22±59.29,and 262.69±45.55μm in the F-APAC,F-CPACG,and normal groups,respectively.All macular sectors showed significantly higher CVIs and choroidal thickness in the F-APAC and F-CPACG eyes than in the normal eyes(P<0.05),while there were no significant differences between the F-APAC and F-CPACG eyes.In the peripapillary region,the mean overall CVIs were 0.21±0.08,0.20±0.08,and 0.19±0.05,and the mean overall choroidal thickness were 180.45±54.18,174.82±50.67,and 176.18±37.94μm in the F-APAC,F-CPACG,and normal groups,respectively.There were no significant differences between any of the two groups in all peripapillary sectors.Younger age,shorter axial length,and the F-APAC or F-CPACG diagnosis were significantly associated with higher subfoveal CVI and thicker subfoveal choroidal thickness(P<0.05).CONCLUSION:The fellow eyes of unilateral APAC or asymmetric CPACG have higher macular CVI and choroidal thickness than those of the normal controls.Neither CVI nor choroidal thickness can distinguish between eyes predisposed to APAC or CPACG.A thicker choroid with a higher vascular volume may play a role in the pathogenesis of primary angle-closure glaucoma.
基金supported through HLM’s Program Penelitian Pengabdian Masyarakat ITB(P2MI)Astronomy Division,FMIPA ITB grant 2022-2023Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX13AC07G and by other grants and contracts。
文摘We present optical spectra of 10 Galactic Wolf-Rayet(WR)stars that consist of five WN and five WC stars.The optical observation was conducted using a low-resolution spectrograph NEO-R1000(λ/Δλ~1000)at GAO-ITB RTS(27.94 cm,F/10.0),Bosscha Observatory,Lembang.We implemented stellar atmosphere Postdam Wolf-Rayet(PoWR)grid modeling to derive stellar parameters.The normalized optical spectrum can be used to find the best model from the available PoWR grid,then we could derive stellar temperature and transformation radius.To derive luminosity,stellar radius and color excess,we conducted a Spectral Energy Distribution(SED)analysis with additional data on the near-ultraviolet spectrum from the International Ultraviolet Explorer(IUE)database,and UBV and 2MASS JHK broadband filter data.Additional analysis to derive asymptotic terminal wind velocity was conducted from the P-Cygni profile analysis of the high-resolution IUE ultraviolet spectrum.With previously derived parameters,we could determine the mass loss rate of the WR stars.Furthermore,we compared our results with previous work that used PoWR code and the differences are not more than 20%.We conclude that the PoWR spectral grid is sufficient to derive WR stellar parameters quickly and could provide more accurate initial parameter input to the PoWR program code.
基金funding from the National Natural Science Foundation of China(NSFC)under grants 61627827,61705068the Natural Science Foundation of Fujian Province 2021J01813the Fujian Medical University Research Foundation of Talented Scholars XRCZX2021004.
文摘In this work,we present an intravascular dual-mode endoscopic system capable of both intravascular photoacoustic imaging(IVPAI)and intravascular optical coherence tomography(IVOCT)for recognizing spontaneous coronary artery dissection(SCAD)phantoms.IVPAI provides high-resolution and high-penetration images of intramural hematoma(IMH)at different depths,so it is especially useful for imaging deep blood clots associated with imaging phantoms.IVOCT can readily visualize the double-lumen morphology of blood vessel walls to identify intimal tears.We also demonstrate the capability of this dual-mode endoscopic system using mimicking phantoms and biological samples of blood clots in ex vivo porcine arteries.The results of the experiments indicate that the combined IVPAI and IVOCT technique has the potential to provide a more accurate SCAD assessment method for clinical applications.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334020 and 11927810)the National Key Research and Development Program of China(Grant No.2022YFB3904001).
文摘We construct a power enhancement cavity to form an optical lattice in an ytterbium optical clock.It is demonstrated that the intra-cavity lattice power can be increased by about 45 times,and the trap depth can be as large as 1400Er when laser light with a power of only 0.6 W incident to the lattice cavity.Such high trap depths are the key to accurate evaluation of the lattice-induced light shift with an uncertainty down to~1×10-18.By probing the ytterbium atoms trapped in the power-enhanced optical lattice,we obtain a 4.3 Hz-linewidth Rabi spectrum,which is then used to feedback to the clock laser for the close loop operation of the optical lattice clock.We evaluate the density shift of the Yb optical lattice clock based on interleaving measurements,which is-0.46(62)mHz.This result is smaller compared to the density shift of our first Yb optical clock without lattice power enhancement cavity mainly due to a larger lattice diameter of 344μm.