A tunable ultrafast intensity-rotating optical field is generated by overlapping a pair of 20Hz,800 nm chirped pulses with a Michelson interferometer(MI).Its rotating rate can be up to 10 trillion radians per second(T...A tunable ultrafast intensity-rotating optical field is generated by overlapping a pair of 20Hz,800 nm chirped pulses with a Michelson interferometer(MI).Its rotating rate can be up to 10 trillion radians per second(Trad/s),which can be flexibly tuned with a mirror in the MI.Besides,its fold rotational symmetry structure is also changeable by controlling the difference from the topological charges of the pulse pair.Experimentally,we have successfully developed a twopetal lattice with a tunable rotating speed from 3.9 Trad/s up to 11.9 Trad/s,which is confirmed by our single-shot ultrafast frame imager based on noncollinear optical-parametric amplification with its highest frame rate of 15 trillion frames per second(Tfps).This work is carried out at a low repetition rate.Therefore,it can be applied at relativistic,even ultrarelativistic,intensities,which usually operate in low repetition rate ultrashort and ultraintense laser systems.We believe that it may have application in laser-plasma-based accelerators,strong terahertz radiations and celestial phenomena.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61775142,61705132,61490710 and 61827815)China Postdoctoral Science Foundation(No.2017M612726)+1 种基金Shenzhen Basic Research Project on Subject Layout(No.JCYJ20170412105812811)Fund of the International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology,Shenzhen University(No.2DMOST2018019)。
文摘A tunable ultrafast intensity-rotating optical field is generated by overlapping a pair of 20Hz,800 nm chirped pulses with a Michelson interferometer(MI).Its rotating rate can be up to 10 trillion radians per second(Trad/s),which can be flexibly tuned with a mirror in the MI.Besides,its fold rotational symmetry structure is also changeable by controlling the difference from the topological charges of the pulse pair.Experimentally,we have successfully developed a twopetal lattice with a tunable rotating speed from 3.9 Trad/s up to 11.9 Trad/s,which is confirmed by our single-shot ultrafast frame imager based on noncollinear optical-parametric amplification with its highest frame rate of 15 trillion frames per second(Tfps).This work is carried out at a low repetition rate.Therefore,it can be applied at relativistic,even ultrarelativistic,intensities,which usually operate in low repetition rate ultrashort and ultraintense laser systems.We believe that it may have application in laser-plasma-based accelerators,strong terahertz radiations and celestial phenomena.