Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences amo...Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.展开更多
The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. T...The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.展开更多
Optical gain and thermal carrier loss distributions regarding current diffusion and various electric contact areas are investigated to improve the near-field modes from the ring-shape to a Gaussian-like configuration ...Optical gain and thermal carrier loss distributions regarding current diffusion and various electric contact areas are investigated to improve the near-field modes from the ring-shape to a Gaussian-like configuration for extra-broad-area and oxide-confined vertical-cavity surface-emitting lasers. In this work an equivalent circuit network model is used. The resistance of the continuously-graded distributed Bragg reflectors (DBRs), the current diffusion and the temperature effect due to different electric-contact areas are calculated and analyzed at first, as these parameters affect one another and are the key factors in determining the gain and thermal carrier loss. Finally, the gain and thermal carrier loss distributions are calculated and discussed.展开更多
The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the ...The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.展开更多
The influence of external optical feedback (OFB) on the light-current characteristics of the vertical-cavity surface-emitting lasers (VCSELs) was investigated theoretically and experimentally. By calculating the O...The influence of external optical feedback (OFB) on the light-current characteristics of the vertical-cavity surface-emitting lasers (VCSELs) was investigated theoretically and experimentally. By calculating the OFB sensitivity parameter, the OFB sensibility of the VCSELs was compared with the edge emitting lasers. Based on the compound cavity theory, the light-current characteristic parameters of the VCSELs with external OFB, such as the threshold current and the slope efficiency, were calculated. The experimental results indicated that the threshold current of the VCSELs with different DBR refleetivities decreased to different degrees, accompanied with a decrease of slope efficiency when under 10% feedback ratio of the external OFB, which is in good agreement with the theoretical calculation.展开更多
基金Supported by the‘Supporting First Action’Joint Foundation for Outstanding Postdoctoral Program under Grant Nos Y7YBSH0001 and Y7BSH14001the National Natural Science Foundation of China under Grant No 61434006the National Key Basic Research Program of China under Grant No 2017YFB0102302
文摘Beam steering in implant defined coherently coupled vertical cavity surface emitting laser (VCSEL) arrays is simulated using the FDTD solution software. Angular deflection dependent on relative phase differences among elements, inter-element spacing, element size and emitted wavelength is analyzed detailedly and systematically. We design and fabricate 1×2 implant defined VCSEL arrays for optimum beam steering performance. Electroni- cally controlled beam steering with a maximum deflection angle of 1.6° is successfully achieved in the 1 × 2 VCSEL arrays. The percentage of the power in the central lobe is above 39% when steering. The results show that the steering is controllable. Compared with other beam steering methods, the fabrication process is simple and of low cost.
基金Project supported the National Key Basic Research and Development Program of China (Grant Nos.2012CB921304 and 2013CB632805)the National Natural Science Foundation of China (Grant Nos.60990313,61306120,and 6106003)the Foundation of Fuzhou University (Grant No.022498)
文摘The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.
基金Project supported by the National Natural Science Foundation of China(Grant No.10974012)
文摘Optical gain and thermal carrier loss distributions regarding current diffusion and various electric contact areas are investigated to improve the near-field modes from the ring-shape to a Gaussian-like configuration for extra-broad-area and oxide-confined vertical-cavity surface-emitting lasers. In this work an equivalent circuit network model is used. The resistance of the continuously-graded distributed Bragg reflectors (DBRs), the current diffusion and the temperature effect due to different electric-contact areas are calculated and analyzed at first, as these parameters affect one another and are the key factors in determining the gain and thermal carrier loss. Finally, the gain and thermal carrier loss distributions are calculated and discussed.
文摘The intrinsic features involving a circularly symmetric beam profile with low divergence, planar geometry as well as the increasingly enhanced power of vertical-cavity surface-emitting lasers (VCSELs) have made the VCSEL a promising pump source in direct end bonding to a solid-state laser medium to form the minimized, on-wafer integrated laser system. This scheme will generate a surface contact pump configuration and thus additional end thermal coupling to the laser medium through the joint interface of both materials, apart from pump beam heating. This paper analytically models temperature distributions in both VCSEL and the laser medium from the end thermal coupling regarding surface contact pump configuration using a top-emitting VCSEL as the pump source for the first time. The analytical solutions are derived by introducing relative temperature and mean temperature expressions. The results show that the end contact heating by the VCSEL could lead to considerable temperature variations associated with thermal phase shift and thermal lensing in the laser medium. However, if the central temperature of the interface is increased by less than 20 K, the end contact heating does not have a significant thermal influence on the laser medium. In this case, the thermal effect should be dominated by pump beam heating. This work provides useful analytical results for further analysis of hybrid thermal effects on those lasers pumped by a direct VCSEL bond.
基金supported by the National Natural Science Foundation of China(Nos.60636020,10974012,60876036,90923037,60676034, 60706007)the Jilin Province Science and Technology Development Plan Item(Nos.20080335,20080516)the CAS Innovation Program.
文摘The influence of external optical feedback (OFB) on the light-current characteristics of the vertical-cavity surface-emitting lasers (VCSELs) was investigated theoretically and experimentally. By calculating the OFB sensitivity parameter, the OFB sensibility of the VCSELs was compared with the edge emitting lasers. Based on the compound cavity theory, the light-current characteristic parameters of the VCSELs with external OFB, such as the threshold current and the slope efficiency, were calculated. The experimental results indicated that the threshold current of the VCSELs with different DBR refleetivities decreased to different degrees, accompanied with a decrease of slope efficiency when under 10% feedback ratio of the external OFB, which is in good agreement with the theoretical calculation.
基金Project supported by the National Science Foundation of China under Contract Number NSFC(60636020,60676034,60706007)Project supported by CAS Innovation ProgramNational Science Foundation of Jilin Province(20080335,20086011)~~