The epitaxial growth conditions and performance of a diode-pumped GaSb-based optically pumped semiconductor disk laser(SDL) emitting near 2.0 μm in an external cavity configuration are reported. The high quality epit...The epitaxial growth conditions and performance of a diode-pumped GaSb-based optically pumped semiconductor disk laser(SDL) emitting near 2.0 μm in an external cavity configuration are reported. The high quality epitaxial structure,grown on Te-doped(001) oriented GaSb substrate by molecular beam epitaxy, consists of a distributed Bragg reflector(DBR), a multi-quantum-well gain region, and a window layer. An intra-cavity SiC heat spreader was attached to the gain chip for effective thermal management. A continuous-wave output power of over 1 W operating at 2.03 μm wavelength operating near room temperature was achieved using a 3% output coupler.展开更多
This paper reviewed the development of optically pumped GaSb based semiconductor disk lasers (SDLs) emission at 2 μm wavelength region from the aspects of wavelength extending, power scaling, line-width narrowing a...This paper reviewed the development of optically pumped GaSb based semiconductor disk lasers (SDLs) emission at 2 μm wavelength region from the aspects of wavelength extending, power scaling, line-width narrowing and short-pulse generation. Most recently, the wavelength of GaSb based SDLs has been extended to 2.8 μm. The highest output power of the GaSb based SDLs has been reached to 17 W at the temperature of 20 ℃. By using active stabilization, the GaSb based SDL with line-width of 20 kHz and output power of 1 W was realized. Moreover, the shortest pulse obtained fromthe GaSb based SDLs was generated as short as 384 fs by incorporating semiconductor saturable absorber mirrors(SESAM) in the cavity.展开更多
We demonstrate the first use of single layer graphene for compressing self-Q-switching pulses in semiconductor disk lasers. The gain region of the semiconductor disk laser used InGaAs quantum wells with a central wave...We demonstrate the first use of single layer graphene for compressing self-Q-switching pulses in semiconductor disk lasers. The gain region of the semiconductor disk laser used InGaAs quantum wells with a central wavelength of 1030 nm. Due to self saturable absorption of the quantum wells, the disk laser emitted at the self-Q-switching state with a pulse width of 13 μs. By introducing the single layer graphene as a saturable absorber into the V-shaped laser cavity, the pulse width of the self-pulse was compressed to 2 μs with a lower pump power of 300 mW. As the pump power was increased, multiple pulses with the pulse width of 1.8 μs appeared. The compression factor was about 7.2.展开更多
Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror(SESAM). 12.1 W mode-locked pulses were obtained with...Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror(SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit.展开更多
The high peak power of picosecond pulses produced by a self-mode-locked semiconductor disk laser can effectively improve the efficiency of nonlinear frequency conversion.This paper presents the intracavity frequency t...The high peak power of picosecond pulses produced by a self-mode-locked semiconductor disk laser can effectively improve the efficiency of nonlinear frequency conversion.This paper presents the intracavity frequency tripling in a self-mode-locked semiconductor disk laser,and a picosecond pulse train at 327 nm wavelength is achieved.The pulse repetition rate is 0.49 GHz,and the pulse width is 5.0 ps.The obtained maximum ultraviolet output power under mode locking is 30.5 m W,and the corresponding conversion efficiency is obviously larger than that of continuous-wave operation.These ultraviolet picosecond pulses have high spatial and temporal resolution and can be applied in some emerging fields.展开更多
We report a wavelength-tunable multi-point pump scheme of the semiconductor disk lasers(SDLs).By designing an external cavity of SDL with an intra-cavity transmission grating,multiple pump gain regions share the same ...We report a wavelength-tunable multi-point pump scheme of the semiconductor disk lasers(SDLs).By designing an external cavity of SDL with an intra-cavity transmission grating,multiple pump gain regions share the same resonator.The effect of the intra-cavity grating on the output laser power,wavelength,and beam quality was investigated.The emission wavelength could be tuned over a bandwidth of~18 nm.With multi-point pumping,we achieve the laser output power with almost no loss,and further improvement is limited by the thermal effect.The changes in the beam are due to the mode selectivity by the intra-cavity grating.展开更多
基金supported by the Major Program of the National Natural Science Foundation of China(Grant Nos.61790581,61790582,and 61790584)the National Natural Science Foundation of China(Grant No.61435012)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170032)
文摘The epitaxial growth conditions and performance of a diode-pumped GaSb-based optically pumped semiconductor disk laser(SDL) emitting near 2.0 μm in an external cavity configuration are reported. The high quality epitaxial structure,grown on Te-doped(001) oriented GaSb substrate by molecular beam epitaxy, consists of a distributed Bragg reflector(DBR), a multi-quantum-well gain region, and a window layer. An intra-cavity SiC heat spreader was attached to the gain chip for effective thermal management. A continuous-wave output power of over 1 W operating at 2.03 μm wavelength operating near room temperature was achieved using a 3% output coupler.
基金We are grateful for financial supports from the Major Program of National Natural Science Foundation of China (61790584).
文摘This paper reviewed the development of optically pumped GaSb based semiconductor disk lasers (SDLs) emission at 2 μm wavelength region from the aspects of wavelength extending, power scaling, line-width narrowing and short-pulse generation. Most recently, the wavelength of GaSb based SDLs has been extended to 2.8 μm. The highest output power of the GaSb based SDLs has been reached to 17 W at the temperature of 20 ℃. By using active stabilization, the GaSb based SDL with line-width of 20 kHz and output power of 1 W was realized. Moreover, the shortest pulse obtained fromthe GaSb based SDLs was generated as short as 384 fs by incorporating semiconductor saturable absorber mirrors(SESAM) in the cavity.
基金supported by the National Basic Research Program of China(Grant No.2013CB922404)the National Natural Science Foundation of China(Grant No.61177047)the Key Project of the National Natural Science Foundation of China(Grant No.61235010)
文摘We demonstrate the first use of single layer graphene for compressing self-Q-switching pulses in semiconductor disk lasers. The gain region of the semiconductor disk laser used InGaAs quantum wells with a central wavelength of 1030 nm. Due to self saturable absorption of the quantum wells, the disk laser emitted at the self-Q-switching state with a pulse width of 13 μs. By introducing the single layer graphene as a saturable absorber into the V-shaped laser cavity, the pulse width of the self-pulse was compressed to 2 μs with a lower pump power of 300 mW. As the pump power was increased, multiple pulses with the pulse width of 1.8 μs appeared. The compression factor was about 7.2.
基金Project supported by the National Key Basic Research Program of China(Grant No.2013CB922402)the National Major Instrument Program of China(Grant No.2012YQ120047)the National Natural Science Foundation of China(Grant No.61210017)
文摘Pumped by a 940 nm fiber-coupled diode laser, a passively mode-locked Yb:YAG thin disk oscillator was demonstrated with a semiconductor saturable absorber mirror(SESAM). 12.1 W mode-locked pulses were obtained with pulse duration of 698 fs at the repetition rate of 57.43 MHz. Measurement showed that the beam quality was close to the diffraction limit.
基金supported by the Cooperation Project between Chongqing Local Universities and Institutions of Chinese Academy of Sciences,Chongqing Municipal Education Commission(No.HZ2021007)the National Natural Science Foundation of China(Nos.61904024,61975003,61790584,and 62025506)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M201900502)。
文摘The high peak power of picosecond pulses produced by a self-mode-locked semiconductor disk laser can effectively improve the efficiency of nonlinear frequency conversion.This paper presents the intracavity frequency tripling in a self-mode-locked semiconductor disk laser,and a picosecond pulse train at 327 nm wavelength is achieved.The pulse repetition rate is 0.49 GHz,and the pulse width is 5.0 ps.The obtained maximum ultraviolet output power under mode locking is 30.5 m W,and the corresponding conversion efficiency is obviously larger than that of continuous-wave operation.These ultraviolet picosecond pulses have high spatial and temporal resolution and can be applied in some emerging fields.
基金supported by the National Natural Science Foundation of China(Nos.61790584 and 62025506)the funding from TRUMPF,and K.C.Wong Education Foundation。
文摘We report a wavelength-tunable multi-point pump scheme of the semiconductor disk lasers(SDLs).By designing an external cavity of SDL with an intra-cavity transmission grating,multiple pump gain regions share the same resonator.The effect of the intra-cavity grating on the output laser power,wavelength,and beam quality was investigated.The emission wavelength could be tuned over a bandwidth of~18 nm.With multi-point pumping,we achieve the laser output power with almost no loss,and further improvement is limited by the thermal effect.The changes in the beam are due to the mode selectivity by the intra-cavity grating.