Changchun Institute of Optics, Fine Mechanics, and Physics (CIOMP) of CAS was established in Changchun, Jilin Province, on July 5, 1999 on the basis of consolidation of two former CAS institutes: Changchun Institute o...Changchun Institute of Optics, Fine Mechanics, and Physics (CIOMP) of CAS was established in Changchun, Jilin Province, on July 5, 1999 on the basis of consolidation of two former CAS institutes: Changchun Institute of Optics and Fine Mechanics, and Changchun Institute of Physics. The institute is an experimental unit of CAS Knowledge Innovation Program (KIP).展开更多
We investigate how an initial thermo vacuum state, in the context of thermo field dynamics, evolves in a single-mode amplitude dissipative channel, and find that in this process the thermo squeezing effect decreases w...We investigate how an initial thermo vacuum state, in the context of thermo field dynamics, evolves in a single-mode amplitude dissipative channel, and find that in this process the thermo squeezing effect decreases while the fictitious-mode vacuum becomes chaotic.展开更多
S-doped and Al-doped GaSe crystals are promising materials for their applications in nonlinear frequency conversion devices. The optical and defect properties of pure, S-doped, and Al-doped GaSe crystals were studied ...S-doped and Al-doped GaSe crystals are promising materials for their applications in nonlinear frequency conversion devices. The optical and defect properties of pure, S-doped, and Al-doped GaSe crystals were studied by using photoluminescence(PL) and Fourier transform infrared spectroscopy(FT-IR). The micro-topography of(0001) face of these samples was observed by using scanning electron microscope(SEM) to investigate the influence of the doped defects on the intralayer and interlayer chemical bondings. The doped S or Al atoms form the SSe^0 or AlGa^+1) substitutional defects in the layer GaSe structure, and the positive center of AlGa-^+1 could induce defect complexes. The incorporations of S and Al atoms can change the optical and mechanical properties of the GaSe crystal by influencing the chemical bonding of the layer structure. The study results may provide guidance for the crystal growth and further applications of S-doped and Al-doped GaSe crystals.展开更多
A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d?level six-state QKD protocol that exploits the orbital angular moment...A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d?level six-state QKD protocol that exploits the orbital angular momentum with the spatial mode of the light beam. The protocol shows that the feature of a high capacity since keys are encoded using photon modes in d-level Hilbert space. The devices for state preparation and measurement are also discussed. This protocol has high security and the alignment of shared reference frames is not needed between sender and receiver.展开更多
The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster ...The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster state with atomic ensembles based on the Rydberg blockade. Using similar resources as the earlier scheme, here we propose an experimentally feasible scheme of preparing arbitrary four-qubit W class of maximally and non- maximally entangled states with atomic ensembles in a single step. Moreover, we carefully analyze the realistic noises and predict that four-qubit W states can be produced with high fidelity (F - 0.994) via our scheme.展开更多
We propose an optical scheme to generate cluster states of atomic qubits, with each trapped in separate optical cavity, via atom-cavity-laser interaction. The quantum information of each qubit is encoded on the degene...We propose an optical scheme to generate cluster states of atomic qubits, with each trapped in separate optical cavity, via atom-cavity-laser interaction. The quantum information of each qubit is encoded on the degenerate ground states of the atom, hence the entanglement between them is relatively stable against spontaneous emission. A single-photon source and two classical fields are employed in the present scheme. By controlling the sequence and time of atom-cavity-laser interaction, we show that the atomic cluster states can be produced deterministically.展开更多
In terms of the intermediate coordinate-momentum representation (Chin. Phys. Lett. 18 (2001) 850) and using the technique of integration within an ordered product of operators, we put the tomography theory into op...In terms of the intermediate coordinate-momentum representation (Chin. Phys. Lett. 18 (2001) 850) and using the technique of integration within an ordered product of operators, we put the tomography theory into operator version. We reveal the new relation between the tomogram and the characteristic function of the density operator. The new expansion of the density operator in terms of the intermediate coordinate-momentum representation is also obtained.展开更多
In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the ...In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack. Finally, we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.展开更多
A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time rema...A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time remains unchanged with the increasing number of qubits. In addition, the influence of cavity decay and atomic spontaneous emission on the gate fidelity and photon loss probability is also discussed by numerical calculation.展开更多
A novel structure design of micro optic electro mechanical system(MOEMS)gyroscope is presented in this paper.The structure combining surface acoustic wave(SAW)sensor,optical waveguide diffractive component,electro...A novel structure design of micro optic electro mechanical system(MOEMS)gyroscope is presented in this paper.The structure combining surface acoustic wave(SAW)sensor,optical waveguide diffractive component,electro-optical modulator etc.is integrated on a LiNbO3 substrate as the gyroscope for sensing rotating angular velocity,and an optical readout device is added on the traditional SAW typed TE-TM mode converter as the detecting device.The principles of the MOEMS are discussed in the paper,and simulation result shows that there would be apparent advantages of higher precision and stronger anti-vibration capacity.展开更多
Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as pre...Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as precision mechanics and manufacturing, aerospace and automotive testing and inspection, materials science, and biomedical engineering. Advances in Optical Techniques for Me- chanical Measurements presents the latest research progresses in several widely used optical techniques with applications in preci- sion mechanical engineering.展开更多
WNxfilms are deposited by reactive chemical vapor deposition at different amounts of nitrogen in gas mixtures.Experimental data demonstrate that nitrogen amount has a strong effect on microstructure, phase formation,t...WNxfilms are deposited by reactive chemical vapor deposition at different amounts of nitrogen in gas mixtures.Experimental data demonstrate that nitrogen amount has a strong effect on microstructure, phase formation,texture morphology, mechanical and optical properties of the WNxfilms. With increasing nitrogen a phase transition from a single WNxphase with low crystallinity structure to a well-mixed crystallized hexagonal WNxand face-centered-cubic W2N phases appears. Relatively smooth morphology at lower N2concentration changes to a really smooth morphology and then granular with coarse surface at higher N2concentration. The SEM observation clearly shows a columnar structure at lower N2concentration and a dense nanoplates one for higher nitrogen content. The hardness of WNxthin films mainly depends on the film microstructure. The absorbance peak position shifts to shorter wavelength continuously with increasing nitrogen amount and decreasing particle size.展开更多
We propose a new scheme to achieve the tripartite entanglement based on the standard criteria [Phys. Rev. A 67(2003) 052315] in a inverse-tripod atomic system. In our scheme, the atomic coherence is introduced by tw...We propose a new scheme to achieve the tripartite entanglement based on the standard criteria [Phys. Rev. A 67(2003) 052315] in a inverse-tripod atomic system. In our scheme, the atomic coherence is introduced by two microwave fields which drive the upper three levels of atom. By numerically simulating the dynamics of system, we investigate the generation and evolution of entanglement in the presence of atom and cavity decay. As a result, the present research provides an efficient approach to achieve fully tripartite entanglement with different frequencies and initial states for each entangled mode, which may have impact on the progress of multicolored multi-notes quantum information networks.展开更多
We present a wavelength-tunable narrow-band fiber-coupled source to generate correlated photon pairs at 539 nm and 1550nm. Using a lO-mm PPLN crystal, we obtain more than 50ram tunable range near 1550nm. This source, ...We present a wavelength-tunable narrow-band fiber-coupled source to generate correlated photon pairs at 539 nm and 1550nm. Using a lO-mm PPLN crystal, we obtain more than 50ram tunable range near 1550nm. This source, given its spectral property and tunable property, is well suited for tasks in fiber-optic quantum communication and cryptography networks.展开更多
We present a simple method to realize a swap gate at one step with two molecular ensembles in a stripline cavity. In this scheme, we can benefit from the enhancement of the coherent coupling and acquire a long coheren...We present a simple method to realize a swap gate at one step with two molecular ensembles in a stripline cavity. In this scheme, we can benefit from the enhancement of the coherent coupling and acquire a long coherent time with encoding qubits in different spin states of the rotational ground state in the molecular ensembles. As a by-product, a scheme to create an entangled state with one excitation stored in two ensembles is proposed.展开更多
We propose a scheme for realizing the 1 → 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this sch...We propose a scheme for realizing the 1 → 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this scheme, in order to implement UQCM, we only need phase shift gate operation on SQUID qubits and the Raman transitions. The cavity number we need is only one. Thus our scheme is simple and has advantages in the experimental realization. Furthermore, both the cavity and the SQUID qubits are virtually excited, so the decoherence can be neglected.展开更多
The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical ke...The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical key generation rate in the presence of fluctuation of the dark count rate, and compare the result with the result of the decoy-state without fluctuation. It is found that the key generation rate and maximal secure distance will be decreased under the influence of the fluctuation of the dark count rate.展开更多
This study proposed a coarse-fine mixed model for describing the rail surface unevenness of an ultra-large fully steerable radio telescope (Qi Tai Telescope) with a diameter of 110 meters. The rail surface unevennes...This study proposed a coarse-fine mixed model for describing the rail surface unevenness of an ultra-large fully steerable radio telescope (Qi Tai Telescope) with a diameter of 110 meters. The rail surface unevenness includes information on error arising from two different scales, i.e., the long-period- short-change and the short-period-long-change. Consequently, in this study an idea of a mixed model was proposed, in which trigonometric and fractal functions were, respectively, used to describe infor- mation on error from two scales. Key parameters were determined by using the least squares method and the wavelet transform method, and finally, a specific mathematical expression of the model was obtained by optimization. To validate the effectiveness of the new modeling method, the mixed model was then used to describe the rails of the Green Bank Telescope, the Large Millimeter Telescope, and a radio telescope in Miyun, Beijing. A comparative study revealed that the maximum error was less than 15 %, thus the result was superior to those of existing modeling methods.展开更多
in order to improve the optical and mechanical performances of waterborne polyurethane (WPU), nanocrystalline cellulose (NCC)/WPU composites were synthesized in this study. NCC (prepared by acid hydrolysis of cot...in order to improve the optical and mechanical performances of waterborne polyurethane (WPU), nanocrystalline cellulose (NCC)/WPU composites were synthesized in this study. NCC (prepared by acid hydrolysis of cotton fiber) was modified by (3-aminopropyl)triethoxysilane (APTES) to enhance its compatibility with WPU, and the surface-modified NCC was characterized by grafting ratio, crystallinity and contact angle (CA). NCC/WPU composites were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and thermogravimetric analysis (TG). The anti-yellowing property, specular gloss, pencil hardness, and abrasion resistance of NCC/WPU composites were investigated by the methods of Chinese National Standards GB/T 23999-2009, GB/T 9754-2007, GB/T 6739-2006 and GB/T 1768-2006, respectively. The results showed that the grafting ratio of NCC modified by 6% APTES was 36.01% and the crystallinity of modified NCC was decreased with the enhancement of APTES. CA of the modified NCC was decreased by 28.8% and the nanoparticles were homogeneously dispersed in the WPU matrix. The XRD patterns of the NCC/WPU composites were relatively steady, while the thermal stability of the composites was enhanced by 6.7% with 1.0 wt% modified NCC. Modified NCC affected the specular gloss of NCC/WPU composites more obviously than the anti-yellowing property. The pencil hardness of NCC/WPU composites was increased from 2H to 4H by addition of NCC and the abrasion resistance of the composites was enhanced significantly. In general, NCC/WPU composites showed significant improvements in the optical and mechanical performances.展开更多
The quality of bonding is often a concern in rubber-to-metal bonded parts with regard to the integrity and stability of the structure. In this study, shearography has been used to detect the out-of-plane deformation o...The quality of bonding is often a concern in rubber-to-metal bonded parts with regard to the integrity and stability of the structure. In this study, shearography has been used to detect the out-of-plane deformation of the defects caused by thermal and vacuum stresses. A sample of the vulcanized styrene-butadiene rubber bonded to steel with known artificial voids was prepared and during bonding process a region was glued with thick adhesives. The rubber surface of the sample was inspected in thermal radiation and vacuum modes respectively with a self-designed shearography device. Meanwhile, a numerical simulation was conducted to predict the out-of-plane deformation of the rubber surface in these two stress modes. Results from the numerical simulation and the experiments indicated that the debonding defects could be inspected in both loading modes. In the thermal radiation mode the region with thick adhesives could be identified successfully. This study provides a guideline for quality control of rubber-to-metal structures using an optical method.展开更多
文摘Changchun Institute of Optics, Fine Mechanics, and Physics (CIOMP) of CAS was established in Changchun, Jilin Province, on July 5, 1999 on the basis of consolidation of two former CAS institutes: Changchun Institute of Optics and Fine Mechanics, and Changchun Institute of Physics. The institute is an experimental unit of CAS Knowledge Innovation Program (KIP).
文摘We investigate how an initial thermo vacuum state, in the context of thermo field dynamics, evolves in a single-mode amplitude dissipative channel, and find that in this process the thermo squeezing effect decreases while the fictitious-mode vacuum becomes chaotic.
基金Project supported by Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.CXJJ-16M128)
文摘S-doped and Al-doped GaSe crystals are promising materials for their applications in nonlinear frequency conversion devices. The optical and defect properties of pure, S-doped, and Al-doped GaSe crystals were studied by using photoluminescence(PL) and Fourier transform infrared spectroscopy(FT-IR). The micro-topography of(0001) face of these samples was observed by using scanning electron microscope(SEM) to investigate the influence of the doped defects on the intralayer and interlayer chemical bondings. The doped S or Al atoms form the SSe^0 or AlGa^+1) substitutional defects in the layer GaSe structure, and the positive center of AlGa-^+1 could induce defect complexes. The incorporations of S and Al atoms can change the optical and mechanical properties of the GaSe crystal by influencing the chemical bonding of the layer structure. The study results may provide guidance for the crystal growth and further applications of S-doped and Al-doped GaSe crystals.
基金Supported by the National Basic Research Program of China under Grant Nos 2006CB921106 and 2010CB923202, the Fundamental Research Funds for the Central Universities No BUPT2009RC0710, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No 20090005120008, and the National Natural Science Foundation of China under Grant No 10947151.
文摘A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d?level six-state QKD protocol that exploits the orbital angular momentum with the spatial mode of the light beam. The protocol shows that the feature of a high capacity since keys are encoded using photon modes in d-level Hilbert space. The devices for state preparation and measurement are also discussed. This protocol has high security and the alignment of shared reference frames is not needed between sender and receiver.
基金Supported by the National Natural Science Foundation of China under Grant No 10774192, the Fund of Innovation of Graduate School of National University of Defense Technology under Grant No 080201.
文摘The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster state with atomic ensembles based on the Rydberg blockade. Using similar resources as the earlier scheme, here we propose an experimentally feasible scheme of preparing arbitrary four-qubit W class of maximally and non- maximally entangled states with atomic ensembles in a single step. Moreover, we carefully analyze the realistic noises and predict that four-qubit W states can be produced with high fidelity (F - 0.994) via our scheme.
基金Supported by the National Basic Research Program under Grant No 2007CB925204, the National Natural Science Foundation of China under Grant Nos 10947135 and 10775048, the Opening Project of Key Laboratory of Low Dimensional Quantum Structures and Quantum Control (Hunan Normal University), the Ministry of Education under Grant No QSQC0903, the Scientific Research Fund of Hunan Provincial Education Department under Grant No 09C062, the Construct Prograzn of the Key Discipline in Hunan Province and the Construct Program of the Key Discipline in Changsha University of Science and Technology.
文摘We propose an optical scheme to generate cluster states of atomic qubits, with each trapped in separate optical cavity, via atom-cavity-laser interaction. The quantum information of each qubit is encoded on the degenerate ground states of the atom, hence the entanglement between them is relatively stable against spontaneous emission. A single-photon source and two classical fields are employed in the present scheme. By controlling the sequence and time of atom-cavity-laser interaction, we show that the atomic cluster states can be produced deterministically.
基金Supported by the National Natural Science Foundation of China under Grant No 10874174, and the President Foundation of Chinese Academy of Sciences.
文摘In terms of the intermediate coordinate-momentum representation (Chin. Phys. Lett. 18 (2001) 850) and using the technique of integration within an ordered product of operators, we put the tomography theory into operator version. We reveal the new relation between the tomogram and the characteristic function of the density operator. The new expansion of the density operator in terms of the intermediate coordinate-momentum representation is also obtained.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60873191, 60903152 and 60821001, the SRFDP under Grant No 200800131016, Beijing Nova Program under Grant No 2008B51, Key Project of the Ministry of Education of China under Grant No 109014, China Postdoctoral Science Foundation under Grant No 20090450018, Fujian Provincial Natural Science Foundation under Grant No 2008J0013, and the Foundation of Fujian Education Bureau under Grant No 3A08044.
文摘In a recent paper [Yan F L et al. Chin.Phys.Lett. 25(2008)1187], a quantum secret sharing the protocol between multiparty and multiparty with single photons and unitary transformations was presented. We analyze the security of the protocol and find that a dishonest participant can eavesdrop the key by using a special attack. Finally, we give a description of this strategy and put forward an improved version of this protocol which can stand against this kind of attack.
文摘A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time remains unchanged with the increasing number of qubits. In addition, the influence of cavity decay and atomic spontaneous emission on the gate fidelity and photon loss probability is also discussed by numerical calculation.
基金Sponsored by Postgraduate Science and Technology Innovation Fund of BIT(Rank A)
文摘A novel structure design of micro optic electro mechanical system(MOEMS)gyroscope is presented in this paper.The structure combining surface acoustic wave(SAW)sensor,optical waveguide diffractive component,electro-optical modulator etc.is integrated on a LiNbO3 substrate as the gyroscope for sensing rotating angular velocity,and an optical readout device is added on the traditional SAW typed TE-TM mode converter as the detecting device.The principles of the MOEMS are discussed in the paper,and simulation result shows that there would be apparent advantages of higher precision and stronger anti-vibration capacity.
文摘Recently, optical techniques have attracted great attention due to their excellent non-destructive, non-contact, high-resolution, and full-field characteristics. Applications can be found in diverse fields such as precision mechanics and manufacturing, aerospace and automotive testing and inspection, materials science, and biomedical engineering. Advances in Optical Techniques for Me- chanical Measurements presents the latest research progresses in several widely used optical techniques with applications in preci- sion mechanical engineering.
文摘WNxfilms are deposited by reactive chemical vapor deposition at different amounts of nitrogen in gas mixtures.Experimental data demonstrate that nitrogen amount has a strong effect on microstructure, phase formation,texture morphology, mechanical and optical properties of the WNxfilms. With increasing nitrogen a phase transition from a single WNxphase with low crystallinity structure to a well-mixed crystallized hexagonal WNxand face-centered-cubic W2N phases appears. Relatively smooth morphology at lower N2concentration changes to a really smooth morphology and then granular with coarse surface at higher N2concentration. The SEM observation clearly shows a columnar structure at lower N2concentration and a dense nanoplates one for higher nitrogen content. The hardness of WNxthin films mainly depends on the film microstructure. The absorbance peak position shifts to shorter wavelength continuously with increasing nitrogen amount and decreasing particle size.
基金Supported in part by the National Natural Science Foundation of China under Grant Nos 10634060, 10704017, 10874050 and 10975054, the National Basic Research Program of China under Contract No 2005CB724508, and the Foundation from the Ministry of Education of China under Grant Nos 200804870051) The authors would like to thank Professor Wu Ying for helpful discussion and encouragement.
文摘We propose a new scheme to achieve the tripartite entanglement based on the standard criteria [Phys. Rev. A 67(2003) 052315] in a inverse-tripod atomic system. In our scheme, the atomic coherence is introduced by two microwave fields which drive the upper three levels of atom. By numerically simulating the dynamics of system, we investigate the generation and evolution of entanglement in the presence of atom and cavity decay. As a result, the present research provides an efficient approach to achieve fully tripartite entanglement with different frequencies and initial states for each entangled mode, which may have impact on the progress of multicolored multi-notes quantum information networks.
基金Supported by the National Basic Research Program under Grant No 2006CB921907, the National Natural Science Foundation of China under Grant Nos 10774139 and 60621064, Knowledge Innovation Project of Chinese Academy of Sciences, the Program for New Century Excellent Talents in University, International Cooperation Program of Chinese Academy of Sciences, and Ministry of Science and Technology of China, the Foundation for Author of National Excellent Doctoral Dissertation of China under Grant 200729, and China Postdoctoral Science Foundation under Grant No 20070420736.
文摘We present a wavelength-tunable narrow-band fiber-coupled source to generate correlated photon pairs at 539 nm and 1550nm. Using a lO-mm PPLN crystal, we obtain more than 50ram tunable range near 1550nm. This source, given its spectral property and tunable property, is well suited for tasks in fiber-optic quantum communication and cryptography networks.
文摘We present a simple method to realize a swap gate at one step with two molecular ensembles in a stripline cavity. In this scheme, we can benefit from the enhancement of the coherent coupling and acquire a long coherent time with encoding qubits in different spin states of the rotational ground state in the molecular ensembles. As a by-product, a scheme to create an entangled state with one excitation stored in two ensembles is proposed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60978009 and 60578055, and by the National Basic Research Program of China under Grant Nos 2009CB929604 and 2007CB925204.
文摘We propose a scheme for realizing the 1 → 2 universal quantum cloning machine (UQCM) with superconducting quantum interference device (SQUID) qubits in circuit quantum electrodynamics (circuit QED). In this scheme, in order to implement UQCM, we only need phase shift gate operation on SQUID qubits and the Raman transitions. The cavity number we need is only one. Thus our scheme is simple and has advantages in the experimental realization. Furthermore, both the cavity and the SQUID qubits are virtually excited, so the decoherence can be neglected.
基金Supported by the National Natural Science Foundation of China under Grant No 10504042.
文摘The existing theory of decoy-state quantum cryptography assumes that the dark count rate is a constant, but in practice there exists fluctuation. We develop a new scheme of the decoy state, achieve a more practical key generation rate in the presence of fluctuation of the dark count rate, and compare the result with the result of the decoy-state without fluctuation. It is found that the key generation rate and maximal secure distance will be decreased under the influence of the fluctuation of the dark count rate.
基金financial support from the National Natural Science Foundation of China (Grant Nos. 51305322, 51405364 and 51490660)
文摘This study proposed a coarse-fine mixed model for describing the rail surface unevenness of an ultra-large fully steerable radio telescope (Qi Tai Telescope) with a diameter of 110 meters. The rail surface unevenness includes information on error arising from two different scales, i.e., the long-period- short-change and the short-period-long-change. Consequently, in this study an idea of a mixed model was proposed, in which trigonometric and fractal functions were, respectively, used to describe infor- mation on error from two scales. Key parameters were determined by using the least squares method and the wavelet transform method, and finally, a specific mathematical expression of the model was obtained by optimization. To validate the effectiveness of the new modeling method, the mixed model was then used to describe the rails of the Green Bank Telescope, the Large Millimeter Telescope, and a radio telescope in Miyun, Beijing. A comparative study revealed that the maximum error was less than 15 %, thus the result was superior to those of existing modeling methods.
基金financially supported by the"Fundamental Research Funds for the Central Universities"(No.BLYJ201301)the Forestry Industry Research Special Funds for Public Welfare Projects:Research and Demonstration of Fast-growing Wood Modification and Application(201204702-B2)
文摘in order to improve the optical and mechanical performances of waterborne polyurethane (WPU), nanocrystalline cellulose (NCC)/WPU composites were synthesized in this study. NCC (prepared by acid hydrolysis of cotton fiber) was modified by (3-aminopropyl)triethoxysilane (APTES) to enhance its compatibility with WPU, and the surface-modified NCC was characterized by grafting ratio, crystallinity and contact angle (CA). NCC/WPU composites were examined by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and thermogravimetric analysis (TG). The anti-yellowing property, specular gloss, pencil hardness, and abrasion resistance of NCC/WPU composites were investigated by the methods of Chinese National Standards GB/T 23999-2009, GB/T 9754-2007, GB/T 6739-2006 and GB/T 1768-2006, respectively. The results showed that the grafting ratio of NCC modified by 6% APTES was 36.01% and the crystallinity of modified NCC was decreased with the enhancement of APTES. CA of the modified NCC was decreased by 28.8% and the nanoparticles were homogeneously dispersed in the WPU matrix. The XRD patterns of the NCC/WPU composites were relatively steady, while the thermal stability of the composites was enhanced by 6.7% with 1.0 wt% modified NCC. Modified NCC affected the specular gloss of NCC/WPU composites more obviously than the anti-yellowing property. The pencil hardness of NCC/WPU composites was increased from 2H to 4H by addition of NCC and the abrasion resistance of the composites was enhanced significantly. In general, NCC/WPU composites showed significant improvements in the optical and mechanical performances.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172161,11372173 and 11472163)National Basic Research Program of China(Grant No.2014CB046203)+1 种基金the Innovation Program of Shanghai Municipal Education Commission(Grant No.12ZZ092)the Shanghai Municipal Science and Technology Commission(Grant No.1304H197500)
文摘The quality of bonding is often a concern in rubber-to-metal bonded parts with regard to the integrity and stability of the structure. In this study, shearography has been used to detect the out-of-plane deformation of the defects caused by thermal and vacuum stresses. A sample of the vulcanized styrene-butadiene rubber bonded to steel with known artificial voids was prepared and during bonding process a region was glued with thick adhesives. The rubber surface of the sample was inspected in thermal radiation and vacuum modes respectively with a self-designed shearography device. Meanwhile, a numerical simulation was conducted to predict the out-of-plane deformation of the rubber surface in these two stress modes. Results from the numerical simulation and the experiments indicated that the debonding defects could be inspected in both loading modes. In the thermal radiation mode the region with thick adhesives could be identified successfully. This study provides a guideline for quality control of rubber-to-metal structures using an optical method.