The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi...The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems.展开更多
The optimal bounded control of stochastic-excited systems with Duhem hysteretic components for maximizing system reliability is investigated. The Duhem hysteretic force is transformed to energy-depending damping and s...The optimal bounded control of stochastic-excited systems with Duhem hysteretic components for maximizing system reliability is investigated. The Duhem hysteretic force is transformed to energy-depending damping and stiffness by the energy dissipation balance technique. The controlled system is transformed to the equivalent non- hysteretic system. Stochastic averaging is then implemented to obtain the It5 stochastic equation associated with the total energy of the vibrating system, appropriate for eval- uating system responses. Dynamical programming equations for maximizing system re- liability are formulated by the dynamical programming principle. The optimal bounded control is derived from the maximization condition in the dynamical programming equation. Finally, the conditional reliability function and mean time of first-passage failure of the optimal Duhem systems are numerically solved from the Kolmogorov equations. The proposed procedure is illustrated with a representative example.展开更多
The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction pr...The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.展开更多
Two problems for task schedules in a multiprocessor parallel system are discussed in Ans paper (1) given a partially ordered set of tasks represented by the venices of an acyclic directed graph with their correspondin...Two problems for task schedules in a multiprocessor parallel system are discussed in Ans paper (1) given a partially ordered set of tasks represented by the venices of an acyclic directed graph with their corresponding processing bines, derive the lower bound on the Annimum time(LBMT) needed to process the task graph for a given number of processors. (2) Determine the lower bound on minimum number of processors(LBMP) needed to complete those tasks in minimum bine. It is shown that the proposed LBMT is sharper than previously Known values and the comPUtational aspeCts of these bounds are also discussed.展开更多
In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
Abstract In this paper, by using the explicit expression of the kernel of the cubic spline interpolation, the optimal error bounds for the cubic spline interpolation of lower soomth functions are obtained.
In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong ea...In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.展开更多
This article investigates the optimal observation configuration of unmanned aerial vehicles(UAVs) based on angle and range measurements, and generalizes predecessors' researches in two dimensions into three dimens...This article investigates the optimal observation configuration of unmanned aerial vehicles(UAVs) based on angle and range measurements, and generalizes predecessors' researches in two dimensions into three dimensions. The relative geometry of the UAVs-target will significantly affect the state estimation performance of the target, the cost function based on the Fisher information matrix(FIM) is used to derive the FIM determinant of UAVs' observation in three-dimensional space, and the optimal observation geometric configuration that maximizes the determinant of the FIM is obtained. It is shown that the optimal observation configuration of the UAVs-target is usually not unique, and the optimal observation configuration is proved for two UAVs and three UAVs in three-dimension. The long-range over-the-horizon target tracking is simulated and analyzed based on the analysis of optimal observation configuration for two UAVs. The simulation results show that the theoretical analysis and control algorithm can effectively improve the positioning accuracy of the target. It can provide a helpful reference for the design of over-the-horizon target localization based on UAVs.展开更多
Two authentication codes with arbitration (A 2 codes) are constructed from finite affine spaces to illustrate for the first time that the information theoretic lower bounds for A 2 codes can be strictly tighter t...Two authentication codes with arbitration (A 2 codes) are constructed from finite affine spaces to illustrate for the first time that the information theoretic lower bounds for A 2 codes can be strictly tighter than the combinatorial ones. The codes also illustrate that the conditional combinatorial lower bounds on numbers of encodingdecoding rules are not genuine ones. As an analogue of 3 dimensional case, an A 2 code from 4 dimensional finite projective spaces is constructed, which meets both the information theoretic and combinatorial lower bounds.展开更多
In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices ou...In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.展开更多
This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the gl...This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.展开更多
In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial ...In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.展开更多
In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense...In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense of Pell’s equation p2 - Nq2 = k for some integer k, converging either alternatingly or oppositely.展开更多
In this paper, the exploitation of single population modelled by Richards model is studied. By choosing the maximum annual-sustainable yield as management objective, we investigate the optimal harvesting policies for ...In this paper, the exploitation of single population modelled by Richards model is studied. By choosing the maximum annual-sustainable yield as management objective, we investigate the optimal harvesting policies for autonomous and periodic exploited Richards model. Further, when the functions in the exploited Richards model are stably bounded functions, we study the ultimately optimal harvesting policy and obtain the corresponding average limiting maximum sustainable yield.展开更多
By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent ...By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent conditions of the optimal matching parameter are established,and the expression of the optimal constant factor is obtained.Finally,their applications in operator theory are considered.展开更多
This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory syste...This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory system. The computation of its system spares availability is much complicated. The objective function and constraint functions of DRAMA model could be written as the separable forms. A new bound heuristic algorithm has been presented by improving the bound heuristic algorithm for solving the reliability redundancy optimization problem (BHA in short). With the results, the proposed algorithm has been found to be more economical and effective than BHA to obtain the solutions of large DRAMA model. The new algorithm could be used to solve reliability redundancy optimization problems with the separable forms.展开更多
Analytical approximation of the maximal invariant ellipsoid for discrete-time linear systems with saturated optimal control is established, which is less conservative than existing computationally un-intensive results...Analytical approximation of the maximal invariant ellipsoid for discrete-time linear systems with saturated optimal control is established, which is less conservative than existing computationally un-intensive results. Simultaneously, necessary and sufficient conditions for such approximation being equal to the real maximal invariant ellipsoid is presented. All results are given analytically and can easily be implemented in practice. An illustrative example is given to show the effectiveness of the proposed approach.展开更多
基金supported in part by the National Key Research and Development Program of China(2019YFB1503700)the Hunan Natural Science Foundation-Science and Education Joint Project(2019JJ70063)。
文摘The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems.
基金supported by the National Natural Science Foundation of China(Nos.11202181 and11402258)the Special Fund for the Doctoral Program of Higher Education of China(No.20120101120171)
文摘The optimal bounded control of stochastic-excited systems with Duhem hysteretic components for maximizing system reliability is investigated. The Duhem hysteretic force is transformed to energy-depending damping and stiffness by the energy dissipation balance technique. The controlled system is transformed to the equivalent non- hysteretic system. Stochastic averaging is then implemented to obtain the It5 stochastic equation associated with the total energy of the vibrating system, appropriate for eval- uating system responses. Dynamical programming equations for maximizing system re- liability are formulated by the dynamical programming principle. The optimal bounded control is derived from the maximization condition in the dynamical programming equation. Finally, the conditional reliability function and mean time of first-passage failure of the optimal Duhem systems are numerically solved from the Kolmogorov equations. The proposed procedure is illustrated with a representative example.
文摘The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.
文摘Two problems for task schedules in a multiprocessor parallel system are discussed in Ans paper (1) given a partially ordered set of tasks represented by the venices of an acyclic directed graph with their corresponding processing bines, derive the lower bound on the Annimum time(LBMT) needed to process the task graph for a given number of processors. (2) Determine the lower bound on minimum number of processors(LBMP) needed to complete those tasks in minimum bine. It is shown that the proposed LBMT is sharper than previously Known values and the comPUtational aspeCts of these bounds are also discussed.
文摘In this paper,the kernel of the cubic spline interpolation is given.An optimal error bound for the cu- bic spline interpolation of lower smooth functions is obtained.
文摘Abstract In this paper, by using the explicit expression of the kernel of the cubic spline interpolation, the optimal error bounds for the cubic spline interpolation of lower soomth functions are obtained.
基金Supported by:National Science Fund for Distinguished Young Scholars of China Under Grant No. 50425824the National Natural Science Foundation of China Under Grant No.50578109,90715034 and 90715032
文摘In the field of civil engineering, magnetorheological fluid (MRF) damper-based semi-active control systems have received considerable attention for use in protecting structures from natural hazards such as strong earthquakes and high winds. In this paper, the MRF damper-based semi-active control system is applied to a long-span spatially extended structure and its feasibility is discussed. Meanwhile, a _trust-region method based instantaneous optimal semi-active control algorithm (TIOC) is proposed to improve the performance of the semi-active control system in a multiple damper situation. The proposed TIOC describes the control process as a bounded constraint optimization problem, in which an optimal semi- active control force vector is solved by the trust-region method in every control step to minimize the structural responses. A numerical example of a railway station roof structure installed with MRF-04K dampers is presented. First, a modified Bouc- Wen model is utilized to describe the behavior of the selected MRF-04K damper. Then, two semi-active control systems, including the well-known clipped-optimal controller and the proposed TIOC controller, are considered. Based on the characteristics of the long-span spatially extended structure, the performance of the control system is evaluated under uniform earthquake excitation and travelling-wave excitation with different apparent velocities. The simulation results indicate that the MR fluid damper-based semi-active control systems have the potential to mitigate the responses of full-scale long-span spatially extended structures under earthquake hazards. The superiority of the proposed TIOC controller is demonstrated by comparing its control effectiveness with the clipped-optimal controller for several different cases.
基金supported by the National Natural Science Foundation of China(61703419)。
文摘This article investigates the optimal observation configuration of unmanned aerial vehicles(UAVs) based on angle and range measurements, and generalizes predecessors' researches in two dimensions into three dimensions. The relative geometry of the UAVs-target will significantly affect the state estimation performance of the target, the cost function based on the Fisher information matrix(FIM) is used to derive the FIM determinant of UAVs' observation in three-dimensional space, and the optimal observation geometric configuration that maximizes the determinant of the FIM is obtained. It is shown that the optimal observation configuration of the UAVs-target is usually not unique, and the optimal observation configuration is proved for two UAVs and three UAVs in three-dimension. The long-range over-the-horizon target tracking is simulated and analyzed based on the analysis of optimal observation configuration for two UAVs. The simulation results show that the theoretical analysis and control algorithm can effectively improve the positioning accuracy of the target. It can provide a helpful reference for the design of over-the-horizon target localization based on UAVs.
文摘Two authentication codes with arbitration (A 2 codes) are constructed from finite affine spaces to illustrate for the first time that the information theoretic lower bounds for A 2 codes can be strictly tighter than the combinatorial ones. The codes also illustrate that the conditional combinatorial lower bounds on numbers of encodingdecoding rules are not genuine ones. As an analogue of 3 dimensional case, an A 2 code from 4 dimensional finite projective spaces is constructed, which meets both the information theoretic and combinatorial lower bounds.
基金The research was supported by the State Education Grant for Retumed Scholars
文摘In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.
文摘This paper presents a trust region two phase model algorithm for solving the equality and bound constrained nonlinear optimization problem. A concept of substationary point is given. Under suitable assumptions,the global convergence of this algorithm is proved without assuming the linear independence of the gradient of active constraints. A numerical example is also presented.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.70518001. 70671064)
文摘In this paper, a new branch-and-bound algorithm based on the Lagrangian dual relaxation and continuous relaxation is proposed for discrete multi-factor portfolio selection model with roundlot restriction in financial optimization. This discrete portfolio model is of integer quadratic programming problems. The separable structure of the model is investigated by using Lagrangian relaxation and dual search. Computational results show that the algorithm is capable of solving real-world portfolio problems with data from US stock market and randomly generated test problems with up to 120 securities.
文摘In this paper we examine single-step iterative methods for the solution of the nonlinear algebraic equation f (x) = x2 - N = 0 , for some integer N, generating rational approximations p/q that are optimal in the sense of Pell’s equation p2 - Nq2 = k for some integer k, converging either alternatingly or oppositely.
文摘In this paper, the exploitation of single population modelled by Richards model is studied. By choosing the maximum annual-sustainable yield as management objective, we investigate the optimal harvesting policies for autonomous and periodic exploited Richards model. Further, when the functions in the exploited Richards model are stably bounded functions, we study the ultimately optimal harvesting policy and obtain the corresponding average limiting maximum sustainable yield.
基金Supported by National Natural Science Foundation of China(Grant No.12071491)Guangzhou Science and Technology Plan Project(Grant No.202102080177).
文摘By using the weight function method,the matching parameters of the half discrete Hilbert type multiple integral inequality with a non-homogeneous kernel K(n,||x||ρ,m)=G(nλ1||x||ρmλ,2)are discussed,some equivalent conditions of the optimal matching parameter are established,and the expression of the optimal constant factor is obtained.Finally,their applications in operator theory are considered.
文摘This paper studies the solution technique to solve the DRAMA spares allocation optimization problem. DRAMA model is an analytic spare optimization model of a multi-item, multi-location, and two-echelon inventory system. The computation of its system spares availability is much complicated. The objective function and constraint functions of DRAMA model could be written as the separable forms. A new bound heuristic algorithm has been presented by improving the bound heuristic algorithm for solving the reliability redundancy optimization problem (BHA in short). With the results, the proposed algorithm has been found to be more economical and effective than BHA to obtain the solutions of large DRAMA model. The new algorithm could be used to solve reliability redundancy optimization problems with the separable forms.
基金the Major Program of National Natural Science Foundation of China (No.60710002)Program for Changjiang Scholars and Innovative Research Team in University.
文摘Analytical approximation of the maximal invariant ellipsoid for discrete-time linear systems with saturated optimal control is established, which is less conservative than existing computationally un-intensive results. Simultaneously, necessary and sufficient conditions for such approximation being equal to the real maximal invariant ellipsoid is presented. All results are given analytically and can easily be implemented in practice. An illustrative example is given to show the effectiveness of the proposed approach.