期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimization on the Impeller of a Low-specific-speed Centrifugal Pump for Hydraulic Performance Improvement 被引量:13
1
作者 PEI Ji WANG Wenjie +1 位作者 YUAN Shouqi ZHANG Jinfeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期992-1002,共11页
In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Qd and 1.4Qd is proposed. Three parameters, namely, the bla... In order to widen the high-efficiency operating range of a low-specific-speed centrifugal pump, an optimization process for considering efficiencies under 1.0Qd and 1.4Qd is proposed. Three parameters, namely, the blade outlet width b2, blade outlet angle β2, and blade wrap angle φ, are selected as design variables. Impellers are generated using the optimal Latin hypercube sampling method. The pump efficiencies are calculated using the software CFX 14.5 at two operating points selected as objectives. Surrogate models are also constructed to analyze the relationship between the objectives and the design variables. Finally, the particle swarm optimization algorithm is applied to calculate the surrogate model to determine the best combination of the impeller parameters. The results show that the performance curve predicted by numerical simulation has a good agreement with the experimental results. Compared with the efficiencies of the original impeller, the hydraulic efficiencies of the optimized impeller are increased by 4.18% and 0.62% under 1.0Qd and 1.4Qd, respectively. The comparison of inner flow between the original pump and optimized one illustrates the improvement of performance. The optimization process can provide a useful reference on performance improvement of other pumps, even on reduction of pressure fluctuations. 展开更多
关键词 low-specific-speed centrifugal pump OPTIMIZATION optimal latin hypercube sampling surrogate model particle swarm optimization algorithm numerical simulation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部