Optimizing the allocation of water resources is critical for promoting the optimization and upgrading of industrial structure and coordinated development in the Beijing-Tianjin-Hebei regions of China.Based on specific...Optimizing the allocation of water resources is critical for promoting the optimization and upgrading of industrial structure and coordinated development in the Beijing-Tianjin-Hebei regions of China.Based on specific regional and water conditions,to strengthen the constraints on water resources,the“three-step”adaptive management approach of“scheme design-scheme diagnosis-scheme optimization”of water resource allocation are adopted to facilitate the coordinated optimal allocation of water resources and industrial structure in the Beijing-Tianjin-Hebei regions.First,from the level of overall industry,a water resource allocation scheme for the regions is designed by applying the master-slave hierarchical mode and a bi-level optimal model to determine the ideal amount of water resource allocation for the regions and respective industries.Second,the diagnostic criteria of spatial balance,structural matching,and coordinated development are constructed to determine the rationality of the water resource allocation scheme.Then a benefit compensation function with water market transactions is developed,to adaptively adjust the water resource allocation scheme.Finally,the optimization and upgrading of industrial structure are promoted to improve water consumption efficiency and the coordinated development of the Beijing-Tianjin-Hebei regions.The study can provide reference for the Beijing-Tianjin-Hebei regions to realize the comprehensive optimal allocation of water resources in the regions and improve the adaptability of water resources and industrial structure optimization.展开更多
Generalized case-cohort design has been proved to be a cost-effective way to enhance the efficiency of large epidemiological cohort. In this article, we propose an inference procedure for estimating the unknown parame...Generalized case-cohort design has been proved to be a cost-effective way to enhance the efficiency of large epidemiological cohort. In this article, we propose an inference procedure for estimating the unknown parameters in Cox's proportional hazards model in generalized case-cohort design and establish an optimal sample size allocation to achieve the maximum power at a given budget. The finite sample performance of the proposed method is evaluated through simulation studies. The proposed method is applied to a real data set from the National Wilm's Tumor Study Group.展开更多
基金supported by the Humanities and Social Science Foundation of Ministry of Education“Research on the Optimal Adaptability of Basin Initial Water Rights and Industrial Structures under the Rigid Constraints of Water Resource”[Grant number.21YJCZH176]Beijing Municipal Natural Science Foundation of China“Research on Bi-directional Optimal Adaptability of Water Resource and Industrial Structures under the Coordinated Development of the Beijing-Tianjin-Hebei Region”(Grant number.9202005)+1 种基金the Humanities and Social Science Foundation of Ministry of Education“Research on Complex System Model of Industrial Water Rights Trading Based on Experimental Economics and Dynamic Simulation under Dual Control Action”[Grant number.20YJCZH095]General Projects of Social Science Plan of Beijing Municipal Education Commission[Grant number.SM201910009007].
文摘Optimizing the allocation of water resources is critical for promoting the optimization and upgrading of industrial structure and coordinated development in the Beijing-Tianjin-Hebei regions of China.Based on specific regional and water conditions,to strengthen the constraints on water resources,the“three-step”adaptive management approach of“scheme design-scheme diagnosis-scheme optimization”of water resource allocation are adopted to facilitate the coordinated optimal allocation of water resources and industrial structure in the Beijing-Tianjin-Hebei regions.First,from the level of overall industry,a water resource allocation scheme for the regions is designed by applying the master-slave hierarchical mode and a bi-level optimal model to determine the ideal amount of water resource allocation for the regions and respective industries.Second,the diagnostic criteria of spatial balance,structural matching,and coordinated development are constructed to determine the rationality of the water resource allocation scheme.Then a benefit compensation function with water market transactions is developed,to adaptively adjust the water resource allocation scheme.Finally,the optimization and upgrading of industrial structure are promoted to improve water consumption efficiency and the coordinated development of the Beijing-Tianjin-Hebei regions.The study can provide reference for the Beijing-Tianjin-Hebei regions to realize the comprehensive optimal allocation of water resources in the regions and improve the adaptability of water resources and industrial structure optimization.
基金Supported in part by the Central Universities under Grant No.31541311216,2042014kf0256the National Natural Science Foundation of China under Grant No.11171263,11301545,61371126 and 11401443
文摘Generalized case-cohort design has been proved to be a cost-effective way to enhance the efficiency of large epidemiological cohort. In this article, we propose an inference procedure for estimating the unknown parameters in Cox's proportional hazards model in generalized case-cohort design and establish an optimal sample size allocation to achieve the maximum power at a given budget. The finite sample performance of the proposed method is evaluated through simulation studies. The proposed method is applied to a real data set from the National Wilm's Tumor Study Group.