A metamaterial plate is designed by embedding a periodic array of local nonlinear resonators for its supersonic flutter control.Based on the von Karman large deformation theory and supersonic piston aerodynamic theory...A metamaterial plate is designed by embedding a periodic array of local nonlinear resonators for its supersonic flutter control.Based on the von Karman large deformation theory and supersonic piston aerodynamic theory,the nonlinear aeroelastic equations of the metamaterial plate are obtained by using the Hamilton principle.The comparisons for aeroelastic behaviors of the metamaterial plate and pure plate show that the proposed metamaterial plate can lead to an enlarged flutter boundary and lower vibration amplitude.Furthermore,a parametric optimization strategy for local nonlinear resonators is proposed to improve the nonlinear flutter behaviors of the metamaterial plate,and a significant enhancement of passive control performance can be achieved through optimization design.The present study demonstrates that the design of the metamaterial plate can provide an effective approach and potential application for nonlinear flutter suppression of supersonic plate.展开更多
Based on the characteristics of ferritic SUS430 heating and deformation,and combined with the features of the 1780 mm hot-rolling mill,a roughing model was introduced in two aspects:optimizing the rough rolling passes...Based on the characteristics of ferritic SUS430 heating and deformation,and combined with the features of the 1780 mm hot-rolling mill,a roughing model was introduced in two aspects:optimizing the rough rolling passes and improving the width control precision.Through reducing the rough rolling passes,the rough rolling time can be shortened,the precision rolling startup temperature can be raised and the yield of the hot-rolled products can be increased.Moreover,on the premise that the slab width fluctuation was great,the precision of the width control can be improved through optimizing the parameters of the hot-rolling width control model.The result shows that the optimization and perfection of the original rolling process of the stainless steel 430 series further improved its capacity and product quality.展开更多
基金supported by the National Natural Science Foundation of China(No.11972296)the Overseas Expertise Introduction Project for Discipline Innovation,China(111 Project,No.BP0719007)。
文摘A metamaterial plate is designed by embedding a periodic array of local nonlinear resonators for its supersonic flutter control.Based on the von Karman large deformation theory and supersonic piston aerodynamic theory,the nonlinear aeroelastic equations of the metamaterial plate are obtained by using the Hamilton principle.The comparisons for aeroelastic behaviors of the metamaterial plate and pure plate show that the proposed metamaterial plate can lead to an enlarged flutter boundary and lower vibration amplitude.Furthermore,a parametric optimization strategy for local nonlinear resonators is proposed to improve the nonlinear flutter behaviors of the metamaterial plate,and a significant enhancement of passive control performance can be achieved through optimization design.The present study demonstrates that the design of the metamaterial plate can provide an effective approach and potential application for nonlinear flutter suppression of supersonic plate.
文摘Based on the characteristics of ferritic SUS430 heating and deformation,and combined with the features of the 1780 mm hot-rolling mill,a roughing model was introduced in two aspects:optimizing the rough rolling passes and improving the width control precision.Through reducing the rough rolling passes,the rough rolling time can be shortened,the precision rolling startup temperature can be raised and the yield of the hot-rolled products can be increased.Moreover,on the premise that the slab width fluctuation was great,the precision of the width control can be improved through optimizing the parameters of the hot-rolling width control model.The result shows that the optimization and perfection of the original rolling process of the stainless steel 430 series further improved its capacity and product quality.