A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing ...A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing the residual energy of the flexible modes. The perturbation estimation of flexible appendages to the rigid-hub is accomplished simply via compare the output of real plant with the reference model, and the approach is based on combine this estimation with the bang-bang control for the rigid-hub modes through analysis the basic constraint and the additional constraint, i.e. zero coupling torque and zero coupling torque derivative for general two orders system and three orders system with considerate attitude acceleration mode near time optimal controls. These time optimal controls with control constraints and state constraints leads to forming a boundary-value problem, and resolved the problem using an iterative numerical algorithm. The near time optimal control with perturbation estimation shows a good robust to parameter uncertainty and can suppress the vibration and minimizing the residual energy. The capability of this approach is demonstrated through a numerical example in detail.展开更多
For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated....For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated. The main work includes three parts. Firstly, it is shown that the constructed parameter estimation algorithm not only possesses the same properties as those of traditional estimation algorithms, but also avoids the possibility of division by zero. Secondly, by establishing a relationship between the plant parameter estimate and the controller parameter estimate, some similar properties of the latter are also established. Thirdly, by using the relationship between the normalizing signal and all the signals of the closed-loop system, and some important mathematical tools on discrete-time systems, as in the continuous-time case, a systematic stability and robustness analysis approach to the discrete indirect robust MRAC scheme is developed rigorously.展开更多
In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and &l...In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.展开更多
The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedfo...The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedforward and feedbaek optimal controller is presented. The condition of existence and uniqueness of the control law is given. The disturbanee observer is proposed to make the feedforward control law realizable physically. Simulation results demonstrate that the feedforward and feedbaek optimal control law is more effective and robust than the elassical state feedbaek control law with respect to external disturbanees.展开更多
We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the perfo...We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.展开更多
This paper uses the commutant lifting theorem for representations of the nest algebra to deal with the optimal control of infinite dimensional linear time- varying systems. We solve the model matching problem and a ce...This paper uses the commutant lifting theorem for representations of the nest algebra to deal with the optimal control of infinite dimensional linear time- varying systems. We solve the model matching problem and a certain optimal feedback control problem, each of which corresponds with one type of four-block problem. We also obtain a new formula for the optimal performance and prove the existence of an optimal controller.展开更多
The time optimal problem for a two level quantum sys-tem is studied. We compare two different control strategies of bang-bang control and the geometric control, respectively, es-pecial y in the case of minimizing the ...The time optimal problem for a two level quantum sys-tem is studied. We compare two different control strategies of bang-bang control and the geometric control, respectively, es-pecial y in the case of minimizing the time of steering the state from North Pole to South Pole on the Bloch sphere with bounded control. The time performances are compared for different param-eters by the individual numerical simulation experiments, and the experimental results are analyzed. The results show that the ge-ometric control spends less time than the bang-bang control does.展开更多
We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discus...We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discuss optimality (or nonoptimality) of singular controls satisfying the maximum principle and smoothness of the costate in function of smoothness of the target.展开更多
The paper analyses time series that exhibit equilibrium states. It analyses the formation of equilibrium and how the system can return to the aforementioned equilibrium. The tool that is used in the aforementioned ana...The paper analyses time series that exhibit equilibrium states. It analyses the formation of equilibrium and how the system can return to the aforementioned equilibrium. The tool that is used in the aforementioned analysis is time optimal control in the phase plane. It is proved that equilibrium state is sustainable if initial state is not too far from the equilibrium as well as control vector is large enough. On the other hand, if initial state is one standard deviation away from equilibrium state, it is proved that equilibrium cannot be reached. It is the same case with control vector. If it is unbounded, time optimal control cannot be applied. The approach that is introduced represents unconventional method of analysing equilibrium in time series.展开更多
For the Asynchronous Transfer Mode (ATM) networks with time-varying multiple time-delays, a more realistic model for the available bit rate (ABR) traffic class with explicit rate feedback is introduced. A fuzzy-im...For the Asynchronous Transfer Mode (ATM) networks with time-varying multiple time-delays, a more realistic model for the available bit rate (ABR) traffic class with explicit rate feedback is introduced. A fuzzy-immune controller is designed, which can adjust the rates of ABR on-line, overcome the bad effect caused by the saturation nonlinearity and satisfy the weighted fairness. Also, the sufficient condition that guarantees the stability of the closed-loop system with a fuzzy-immune controller is presented in theory for the first time. The algorithm exhibits good performance, and most importantly, has a solid theoretical foundation and can be implemented in practice easily. Simulation results show that the control system is rapid, adaptive, robust, and meanwhile, the quality of service (QoS) is guaranteed.展开更多
In this paper, time-optimal control problem for a liner n× n co-operative parabolic system involving Laplace operator is considered. This problem is, steering an initial state y(0)=u?, with control u?so that an o...In this paper, time-optimal control problem for a liner n× n co-operative parabolic system involving Laplace operator is considered. This problem is, steering an initial state y(0)=u?, with control u?so that an observation y(t) hitting a given target set in minimum time. First, the existence and uniqueness of solutions of such system under conditions on the coefficients are proved. Afterwards necessary and sufficient conditions of optimality are obtained. Finally a scaler case is given.展开更多
This paper considers the optimal control problem for time-delay bilinear systems affected by sinusoidal disturbances with known frequency and measurable amplitude and phase. Firstly, using the differential homeomorphi...This paper considers the optimal control problem for time-delay bilinear systems affected by sinusoidal disturbances with known frequency and measurable amplitude and phase. Firstly, using the differential homeomorphism, a time-delay bilinear system affected by sinusoidal disturbances is changed to a time-delay pseudo linear system through the coordinate transformation. Then the system with time-delay in control variable is transformed to a linear controllable system without delay using model transformation. At last based on the theory of linear quadratic optimal control, an optimal control law which is used to eliminate the influence of the disturbances is derived from a Riccati equation and Matrix equations. The simulation results show the effectiveness of the method.展开更多
The largest robust stability radius r(P0) of a system P0 is defined as the radius of the largest ball Bmax in the gap metric centered at P0 which can be stabilized by one single controller. Any controller which stabil...The largest robust stability radius r(P0) of a system P0 is defined as the radius of the largest ball Bmax in the gap metric centered at P0 which can be stabilized by one single controller. Any controller which stabilizes Bmax is called an optimally robust controller of P0. Any controller, regarded as a system, should have its own largest robust stability radius also. In this paper it is shown that the largest robust stability radius of any optimally robust controller of P0 is larger than or equal to r(Po). Moreover, the variation of the closed-loop transfer matrix caused by the perturbation of the system is estimated.展开更多
A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations ...A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations of ship speed and disturbances uncertain from wind, wave and sea current, a direct compensative robust optimal control (DCROC) law was developed. It can guarantee closed-loop system globally and uniformly converge to a remained set. High accuracy and robustness were achieved. By introducing some nonlinear blocks, closed-loop system achieves global and uniform asymptotical stableness. Numerical simulations on a Mariner Class ship are presented to validate the control law.展开更多
The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic...The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic optimal control theory,the optimal gains for the control system are figured out.So an optimal controller is developed and implemented using Matlab/Simulink,where the Riccati equation with coupling terms is deduced using the Hamilton equation.The all state feedback is chosen for the controller.The gains for all vehicle variables are traded off so that majority of indexes were up to optimal.The active suspension with optimal control is simulated in frequency domain and time domain separately,and compared with a passive suspension.Throughout all the simulation results,the optimal controller developed in this paper works well in the majority of instances.In all,the comfort and ride performance of the vehicle are improved under the active suspension with optimal control.展开更多
This article presents an equivalence theorem for three different kinds of optimal control problems, which are optimal target control problems, optimal norm control problems, and optimal time control problems. Controll...This article presents an equivalence theorem for three different kinds of optimal control problems, which are optimal target control problems, optimal norm control problems, and optimal time control problems. Controlled systems in this study are internally controlled Stokes equations.展开更多
文摘A feedforward approach for generating near time optimal controller for flexible spacecraft rest-to-rest maneuvers is presented with the objective insensitivity to modeling errors, parameter uncertainty and minimizing the residual energy of the flexible modes. The perturbation estimation of flexible appendages to the rigid-hub is accomplished simply via compare the output of real plant with the reference model, and the approach is based on combine this estimation with the bang-bang control for the rigid-hub modes through analysis the basic constraint and the additional constraint, i.e. zero coupling torque and zero coupling torque derivative for general two orders system and three orders system with considerate attitude acceleration mode near time optimal controls. These time optimal controls with control constraints and state constraints leads to forming a boundary-value problem, and resolved the problem using an iterative numerical algorithm. The near time optimal control with perturbation estimation shows a good robust to parameter uncertainty and can suppress the vibration and minimizing the residual energy. The capability of this approach is demonstrated through a numerical example in detail.
基金supported by National Natural Science Foundation of China (No. 60774010, 10971256, 60974028)Natural Science Foundation of Jiangsu Province (No. BK2009083)+2 种基金Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(No. 07KJB510114)Shandong Provincial Natural Science Foundation of China (No. ZR2009GM008)Natural Science Foundation of Jining University (No. 2009KJLX02)
文摘For a class of discrete-time systems with unmodeled dynamics and bounded disturbance, the design and analysis of robust indirect model reference adaptive control (MRAC) with normalized adaptive law are investigated. The main work includes three parts. Firstly, it is shown that the constructed parameter estimation algorithm not only possesses the same properties as those of traditional estimation algorithms, but also avoids the possibility of division by zero. Secondly, by establishing a relationship between the plant parameter estimate and the controller parameter estimate, some similar properties of the latter are also established. Thirdly, by using the relationship between the normalizing signal and all the signals of the closed-loop system, and some important mathematical tools on discrete-time systems, as in the continuous-time case, a systematic stability and robustness analysis approach to the discrete indirect robust MRAC scheme is developed rigorously.
文摘In this paper, we consider a fully discrete finite element approximation for time fractional optimal control problems. The state and adjoint state are approximated by triangular linear fi nite elements in space and <em>L</em>1 scheme in time. The control is obtained by the variational discretization technique. The main purpose of this work is to derive the convergence and superconvergence. A numerical example is presented to validate our theoretical results.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The optimal control problem for linear time-varying systems affected by external persistent disturbances with known dynamic characteristics but unknown initial conditions is consider and a design procedure of a feedforward and feedbaek optimal controller is presented. The condition of existence and uniqueness of the control law is given. The disturbanee observer is proposed to make the feedforward control law realizable physically. Simulation results demonstrate that the feedforward and feedbaek optimal control law is more effective and robust than the elassical state feedbaek control law with respect to external disturbanees.
基金Project supported by the Open Research Project from the SKLMCCS(Grant No.20120106)the Fundamental Research Funds for the Central Universities of China(Grant No.FRF-TP-13-018A)+2 种基金the Postdoctoral Science Foundation of China(Grant No.2013M530527)the National Natural Science Foundation of China(Grant Nos.61304079 and 61374105)the Natural Science Foundation of Beijing,China(Grant No.4132078 and 4143065)
文摘We develop an online adaptive dynamic programming (ADP) based optimal control scheme for continuous-time chaotic systems. The idea is to use the ADP algorithm to obtain the optimal control input that makes the performance index function reach an optimum. The expression of the performance index function for the chaotic system is first presented. The online ADP algorithm is presented to achieve optimal control. In the ADP structure, neural networks are used to construct a critic network and an action network, which can obtain an approximate performance index function and the control input, respectively. It is proven that the critic parameter error dynamics and the closed-loop chaotic systems are uniformly ultimately bounded exponentially. Our simulation results illustrate the performance of the established optimal control method.
文摘This paper uses the commutant lifting theorem for representations of the nest algebra to deal with the optimal control of infinite dimensional linear time- varying systems. We solve the model matching problem and a certain optimal feedback control problem, each of which corresponds with one type of four-block problem. We also obtain a new formula for the optimal performance and prove the existence of an optimal controller.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Nat- ural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), and the Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
基金supported by the National Key Basic Research Program(2011CBA00200)the National Natural Science Foundation of China(61074050)
文摘The time optimal problem for a two level quantum sys-tem is studied. We compare two different control strategies of bang-bang control and the geometric control, respectively, es-pecial y in the case of minimizing the time of steering the state from North Pole to South Pole on the Bloch sphere with bounded control. The time performances are compared for different param-eters by the individual numerical simulation experiments, and the experimental results are analyzed. The results show that the ge-ometric control spends less time than the bang-bang control does.
文摘We present in this paper a survey of recent results on the relation between time and norm optimality for linear systems and the infinite dimensional version of Pontryagin's maximum principle. In particular, we discuss optimality (or nonoptimality) of singular controls satisfying the maximum principle and smoothness of the costate in function of smoothness of the target.
文摘The paper analyses time series that exhibit equilibrium states. It analyses the formation of equilibrium and how the system can return to the aforementioned equilibrium. The tool that is used in the aforementioned analysis is time optimal control in the phase plane. It is proved that equilibrium state is sustainable if initial state is not too far from the equilibrium as well as control vector is large enough. On the other hand, if initial state is one standard deviation away from equilibrium state, it is proved that equilibrium cannot be reached. It is the same case with control vector. If it is unbounded, time optimal control cannot be applied. The approach that is introduced represents unconventional method of analysing equilibrium in time series.
基金the open subject for Key Laboratory of Process Industry Automation of Ministry of Education.
文摘For the Asynchronous Transfer Mode (ATM) networks with time-varying multiple time-delays, a more realistic model for the available bit rate (ABR) traffic class with explicit rate feedback is introduced. A fuzzy-immune controller is designed, which can adjust the rates of ABR on-line, overcome the bad effect caused by the saturation nonlinearity and satisfy the weighted fairness. Also, the sufficient condition that guarantees the stability of the closed-loop system with a fuzzy-immune controller is presented in theory for the first time. The algorithm exhibits good performance, and most importantly, has a solid theoretical foundation and can be implemented in practice easily. Simulation results show that the control system is rapid, adaptive, robust, and meanwhile, the quality of service (QoS) is guaranteed.
基金National Natural Science Foundation of P. R. China (50477042)Ph. D. Programs Foundation of Ministry of Education of P.R.China (20040422052)the Natural Science Foundation of Shandong Province (Z2004G04)
文摘In this paper, time-optimal control problem for a liner n× n co-operative parabolic system involving Laplace operator is considered. This problem is, steering an initial state y(0)=u?, with control u?so that an observation y(t) hitting a given target set in minimum time. First, the existence and uniqueness of solutions of such system under conditions on the coefficients are proved. Afterwards necessary and sufficient conditions of optimality are obtained. Finally a scaler case is given.
文摘This paper considers the optimal control problem for time-delay bilinear systems affected by sinusoidal disturbances with known frequency and measurable amplitude and phase. Firstly, using the differential homeomorphism, a time-delay bilinear system affected by sinusoidal disturbances is changed to a time-delay pseudo linear system through the coordinate transformation. Then the system with time-delay in control variable is transformed to a linear controllable system without delay using model transformation. At last based on the theory of linear quadratic optimal control, an optimal control law which is used to eliminate the influence of the disturbances is derived from a Riccati equation and Matrix equations. The simulation results show the effectiveness of the method.
文摘The largest robust stability radius r(P0) of a system P0 is defined as the radius of the largest ball Bmax in the gap metric centered at P0 which can be stabilized by one single controller. Any controller which stabilizes Bmax is called an optimally robust controller of P0. Any controller, regarded as a system, should have its own largest robust stability radius also. In this paper it is shown that the largest robust stability radius of any optimally robust controller of P0 is larger than or equal to r(Po). Moreover, the variation of the closed-loop transfer matrix caused by the perturbation of the system is estimated.
基金Navy Engineering University Natural Science Foundation (NoHGDJJ05013)
文摘A linear quadratic optimal direct track-keeping control law was proposed based on first-order Nomoto nominal model. Furthermore, based on Lyapunov stabilized theory, considering parametric uncertainty from variations of ship speed and disturbances uncertain from wind, wave and sea current, a direct compensative robust optimal control (DCROC) law was developed. It can guarantee closed-loop system globally and uniformly converge to a remained set. High accuracy and robustness were achieved. By introducing some nonlinear blocks, closed-loop system achieves global and uniform asymptotical stableness. Numerical simulations on a Mariner Class ship are presented to validate the control law.
基金supported by the Natural Sciences and Engineering Research Council of Canada(N00892)in part by National Natural Science Foundation of China(51405436,51375452,61573174)
文摘The 7-DOF model of a full vehicle with an active suspension is developed in this paper.The model is written into the state equation style.Actuator forces are treated as inputs in the state equations.Based on the basic optimal control theory,the optimal gains for the control system are figured out.So an optimal controller is developed and implemented using Matlab/Simulink,where the Riccati equation with coupling terms is deduced using the Hamilton equation.The all state feedback is chosen for the controller.The gains for all vehicle variables are traded off so that majority of indexes were up to optimal.The active suspension with optimal control is simulated in frequency domain and time domain separately,and compared with a passive suspension.Throughout all the simulation results,the optimal controller developed in this paper works well in the majority of instances.In all,the comfort and ride performance of the vehicle are improved under the active suspension with optimal control.
基金partially supported by the National Natural Science Foundation of China under grants 11371285 and 91130022
文摘This article presents an equivalence theorem for three different kinds of optimal control problems, which are optimal target control problems, optimal norm control problems, and optimal time control problems. Controlled systems in this study are internally controlled Stokes equations.