Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite ele...Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.展开更多
A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium w...A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium with moving boundary values. With the help of theoretical techniques including the change of regions, piecewise threefold quadratic interpolation, calculus of variations, multiplicative commutation rule of differ- ence operators, multiplicative commutation rule of difference operators, decomposition of high order difference operators, induction hypothesis, and prior estimates, an optimal order in 12 norm is displayed to complete the convergence analysis of the numerical algo- rithm. Some numerical results arising in the actual simulation of migration-accumulation of oil resources by this method are listed in the last section.展开更多
In this paper,we introduce and analyze an augmented mixed discontinuous Galerkin(MDG)method for a class of quasi-Newtonian Stokes flows.In the mixed formulation,the unknowns are strain rate,stress and velocity,which a...In this paper,we introduce and analyze an augmented mixed discontinuous Galerkin(MDG)method for a class of quasi-Newtonian Stokes flows.In the mixed formulation,the unknowns are strain rate,stress and velocity,which are approximated by a discontinuous piecewise polynomial triplet ■for k≥0.Here,the discontinuous piecewise polynomial function spaces for the field of strain rate and the stress field are designed to be symmetric.In addition,the pressure is easily recovered through simple postprocessing.For the benefit of the analysis,we enrich the MDG scheme with the constitutive equation relating the stress and the strain rate,so that the well-posedness of the augmented formulation is obtained by a nonlinear functional analysis.For k≥0,we get the optimal convergence order for the stress in broken ■(div)-norm and velocity in L^(2)-norm.Furthermore,the error estimates of the strain rate and the stress in-norm,and the pressure in L^(2)-norm are optimal under certain conditions.Finally,several numerical examples are given to show the performance of the augmented MDG method and verify the theoretical results.Numerical evidence is provided to show that the orders of convergence are sharp.展开更多
基金the National Natural Science Foundation of China(No.50678093)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT00736)
文摘Based on the newly-developed element energy projection (EEP) method with optimal super-convergence order for computation of super-convergent results, an improved self-adaptive strategy for one-dimensional finite element method (FEM) is proposed. In the strategy, a posteriori errors are estimated by comparing FEM solutions to EEP super-convergent solutions with optimal order of super-convergence, meshes are refined by using the error-averaging method. Quasi-FEM solutions are used to replace the true FEM solutions in the adaptive process. This strategy has been found to be simple, clear, efficient and reliable. For most problems, only one adaptive step is needed to produce the required FEM solutions which pointwise satisfy the user specified error tolerances in the max-norm. Taking the elliptical ordinary differential equation of the second order as the model problem, this paper describes the fundamental idea, implementation strategy and computational algorithm and representative numerical examples are given to show the effectiveness and reliability of the proposed approach.
基金Project supported by the Major State Basic Research Program of China (No. 19990328)the National Tackling Key Problems Program (No. 20050200069)+4 种基金the National Natural Science Foundation of China (Nos. 10771124, 10372052, 11101244, and 11271231)the Doctorate Foundation of the Ministry of Education of China (No. 20030422047)the Shandong Province Natural Science Foundation (No. ZR2009AQ012)the Independent Innovation Foundation of Shandong University(No. 2010TS031)the Scientific Research Award Fund for Excellent Middle-Aged and Young Scientists of Shandong Province (No. BS2009NJ003)
文摘A fractional step scheme with modified characteristic finite differences run- ning in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium with moving boundary values. With the help of theoretical techniques including the change of regions, piecewise threefold quadratic interpolation, calculus of variations, multiplicative commutation rule of differ- ence operators, multiplicative commutation rule of difference operators, decomposition of high order difference operators, induction hypothesis, and prior estimates, an optimal order in 12 norm is displayed to complete the convergence analysis of the numerical algo- rithm. Some numerical results arising in the actual simulation of migration-accumulation of oil resources by this method are listed in the last section.
基金supported by the National Natural Science Foundation of China(Grant No.12171383)the National Natural Science Foundation of China(Grant No.11971377).
文摘In this paper,we introduce and analyze an augmented mixed discontinuous Galerkin(MDG)method for a class of quasi-Newtonian Stokes flows.In the mixed formulation,the unknowns are strain rate,stress and velocity,which are approximated by a discontinuous piecewise polynomial triplet ■for k≥0.Here,the discontinuous piecewise polynomial function spaces for the field of strain rate and the stress field are designed to be symmetric.In addition,the pressure is easily recovered through simple postprocessing.For the benefit of the analysis,we enrich the MDG scheme with the constitutive equation relating the stress and the strain rate,so that the well-posedness of the augmented formulation is obtained by a nonlinear functional analysis.For k≥0,we get the optimal convergence order for the stress in broken ■(div)-norm and velocity in L^(2)-norm.Furthermore,the error estimates of the strain rate and the stress in-norm,and the pressure in L^(2)-norm are optimal under certain conditions.Finally,several numerical examples are given to show the performance of the augmented MDG method and verify the theoretical results.Numerical evidence is provided to show that the orders of convergence are sharp.