期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Temperature Prediction Model Identification Using Cyclic Coordinate Descent Based Linear Support Vector Regression 被引量:1
1
作者 张堃 费敏锐 +1 位作者 吴建国 张培建 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期113-118,共6页
Temperature prediction plays an important role in ring die granulator control,which can influence the quantity and quality of production. Temperature prediction modeling is a complicated problem with its MIMO, nonline... Temperature prediction plays an important role in ring die granulator control,which can influence the quantity and quality of production. Temperature prediction modeling is a complicated problem with its MIMO, nonlinear, and large time-delay characteristics. Support vector machine( SVM) has been successfully based on small data. But its accuracy is not high,in contrast,if the number of data and dimension of feature increase,the training time of model will increase dramatically. In this paper,a linear SVM was applied combing with cyclic coordinate descent( CCD) to solving big data regression. It was mathematically strictly proved and validated by simulation. Meanwhile,real data were conducted to prove the linear SVM model's effect. Compared with other methods for big data in simulation, this algorithm has apparent advantage not only in fast modeling but also in high fitness. 展开更多
关键词 linear support vector machine(SVM) cyclic coordinates descent(CCD) optimization big data fast identification
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部