Demand response(DR)and wind power are beneficial to low-carbon electricity to deal with energy and environmental problems.However,the uncertain wind power generation(WG)which has anti-peaking characteristic would be h...Demand response(DR)and wind power are beneficial to low-carbon electricity to deal with energy and environmental problems.However,the uncertain wind power generation(WG)which has anti-peaking characteristic would be hard to exert its ability in carbon reduction.This paper introduces DR into traditional unit commitment(UC)strategy and proposes a multi-objective day-ahead optimal scheduling model for wind farm integrated power systems,since incentive-based DR can accommodate excess wind power and can be used as a source of system spinning reserve to alleviate generation side reserve pressure during both peak and valley load periods.Firstly,net load curve is obtained by forecasting load and wind power output.Then,considering the behavior of DR,a day-ahead optimal dispatching scheme is proposed with objectives of minimum generating cost and carbon emission.Non-dominated sorting genetic algorithm-II(NSGA-II)and satisfaction-maximizing method are adopted to solve the multi-objective model with Pareto fronts and eclectic decision obtained.Finally,a case study is carried out to demonstrate that the approach can achieve economic and environmental aims and DR can help to accommodate the wind power.展开更多
This paper proposes an optimal day-ahead opti-mization schedule for gas-electric integrated energy system(IES)considering the bi-directional energy flow.The hourly topology of electric power system(EPS),natural gas sy...This paper proposes an optimal day-ahead opti-mization schedule for gas-electric integrated energy system(IES)considering the bi-directional energy flow.The hourly topology of electric power system(EPS),natural gas system(NGS),energy hubs(EH)integrated power to gas(P2G)unit,are modeled to minimize the day-ahead operation cost of IES.Then,a second-order cone programming(SOCP)method is utilized to solve the optimization problem,which is actually a mixed integer nonconvex and nonlinear programming issue.Besides,cutting planes are added to ensure the exactness of the global optimal solution.Finally,simulation results demonstrate that the proposed optimization schedule can provide a safe,effective and economical day-ahead scheduling scheme for gas-electric IES.展开更多
基金This work is supported by National Natural Science Foundation of China(No.51277015).
文摘Demand response(DR)and wind power are beneficial to low-carbon electricity to deal with energy and environmental problems.However,the uncertain wind power generation(WG)which has anti-peaking characteristic would be hard to exert its ability in carbon reduction.This paper introduces DR into traditional unit commitment(UC)strategy and proposes a multi-objective day-ahead optimal scheduling model for wind farm integrated power systems,since incentive-based DR can accommodate excess wind power and can be used as a source of system spinning reserve to alleviate generation side reserve pressure during both peak and valley load periods.Firstly,net load curve is obtained by forecasting load and wind power output.Then,considering the behavior of DR,a day-ahead optimal dispatching scheme is proposed with objectives of minimum generating cost and carbon emission.Non-dominated sorting genetic algorithm-II(NSGA-II)and satisfaction-maximizing method are adopted to solve the multi-objective model with Pareto fronts and eclectic decision obtained.Finally,a case study is carried out to demonstrate that the approach can achieve economic and environmental aims and DR can help to accommodate the wind power.
基金This work was supported in part by the National Natural Science Foundation of China under Grants 61673161 and 51807134and in part by the program of fundamental research of the Siberian Branch of Russian Academy of Sciences and carried out within the framework of the research project III.17.3.1,Reg.No.AAAA-A17-117030310442-8.
文摘This paper proposes an optimal day-ahead opti-mization schedule for gas-electric integrated energy system(IES)considering the bi-directional energy flow.The hourly topology of electric power system(EPS),natural gas system(NGS),energy hubs(EH)integrated power to gas(P2G)unit,are modeled to minimize the day-ahead operation cost of IES.Then,a second-order cone programming(SOCP)method is utilized to solve the optimization problem,which is actually a mixed integer nonconvex and nonlinear programming issue.Besides,cutting planes are added to ensure the exactness of the global optimal solution.Finally,simulation results demonstrate that the proposed optimization schedule can provide a safe,effective and economical day-ahead scheduling scheme for gas-electric IES.