期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
RESEARCH ON OPTIMIZING THE MERGING RESULTS OF MULTIPLE INDEPENDENT RETRIEVAL SYSTEMS BY A DISCRETE PARTICLE SWARM OPTIMIZATION 被引量:1
1
作者 XieXingsheng ZhangGuoliang XiongYan 《Journal of Electronics(China)》 2012年第1期111-119,共9页
The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existi... The result merging for multiple Independent Resource Retrieval Systems (IRRSs), which is a key component in developing a meta-search engine, is a difficult problem that still not effectively solved. Most of the existing result merging methods, usually suffered a great influence from the usefulness weight of different IRRS results and overlap rate among them. In this paper, we proposed a scheme that being capable of coalescing and optimizing a group of existing multi-sources-retrieval merging results effectively by Discrete Particle Swarm Optimization (DPSO). The experimental results show that the DPSO, not only can overall outperform all the other result merging algorithms it employed, but also has better adaptability in application for unnecessarily taking into account different IRRS's usefulness weight and their overlap rate with respect to a concrete query. Compared to other result merging algorithms it employed, the DPSO's recognition precision can increase nearly 24.6%, while the precision standard deviation for different queries can decrease about 68.3%. 展开更多
关键词 Multiple resource retrievals Result merging Meta-search engine discrete ParticleSwarm Optimization (DPSO)
下载PDF
Multi-Objective Optimization of Multi-Product Parallel Disassembly Line Balancing Problem Considering Multi-Skilled Workers Using a Discrete Chemical Reaction Optimization Algorithm
2
作者 Xiwang Guo Liangbo Zhou +4 位作者 Zhiwei Zhang Liang Qi Jiacun Wang Shujin Qin Jinrui Cao 《Computers, Materials & Continua》 SCIE EI 2024年第9期4475-4496,共22页
This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassemb... This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers.A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time.Based on a product’s AND/OR graph,matrices for task-skill,worker-skill,precedence relationships,and disassembly correlations are developed.A multi-objective discrete chemical reaction optimization algorithm is designed.To enhance solution diversity,improvements are made to four reactions:decomposition,synthesis,intermolecular ineffective collision,and wall invalid collision reaction,completing the evolution of molecular individuals.The established model and improved algorithm are applied to ball pen,flashlight,washing machine,and radio combinations,respectively.Introducing a Collaborative Resource Allocation(CRA)strategy based on a Decomposition-Based Multi-Objective Evolutionary Algorithm,the experimental results are compared with four classical algorithms:MOEA/D,MOEAD-CRA,Non-dominated Sorting Genetic Algorithm Ⅱ(NSGA-Ⅱ),and Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ).This validates the feasibility and superiority of the proposed algorithm in parallel disassembly production lines. 展开更多
关键词 Parallel disassembly line balancing problem MULTI-PRODUCT multiskilled workers discrete chemical reaction optimization algorithm
下载PDF
DISCRETE OPTIMIZATION APPROACH FOR 3-D SPACE PLATE-SYSTEM STRUCTURE
3
作者 Nie Shaomin Jin Miao (Yanshan University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1994年第2期97-102,共17页
A new nonlinear optimization approach with discrete design variables based on linear estimation is proposed, in which the complex engineering structures optimization problems, such as 3-D space plate-system structures... A new nonlinear optimization approach with discrete design variables based on linear estimation is proposed, in which the complex engineering structures optimization problems, such as 3-D space plate-system structures optimization problems, can be solved. By avoided using point -by-point searching strategy, which is usually used in other discrete optimization algorithms, the times of function calculation is greatly reduced. 展开更多
关键词 Structure optimization discrete optimization
全文增补中
Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem 被引量:27
4
作者 CHEN Ai-ling YANG Gen-ke WU Zhi-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期607-614,共8页
Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational comp... Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid ap- proximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimiza- tion (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems. 展开更多
关键词 Capacitated routing problem discrete particle swarm optimization (DPSO) Simulated annealing (SA)
下载PDF
Novel Discrete Particle Swarm Optimization Based on Huge Value Penalty for Solving Engineering Problem 被引量:7
5
作者 YU Ying YU Xiaochun LI Yongsheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期410-418,共9页
For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle s... For the purpose of solving the engineering constrained discrete optimization problem, a novel discrete particle swarm optimization(DPSO) is proposed. The proposed novel DPSO is based on the idea of normal particle swarm optimization(PSO), but deals with the variables as discrete type, the discrete optimum solution is found through updating the location of discrete variable. To avoid long calculation time and improve the efficiency of algorithm, scheme of constraint level and huge value penalty are proposed to deal with the constraints, the stratagem of reproducing the new particles and best keeping model of particle are employed to increase the diversity of particles. The validity of the proposed DPSO is examined by benchmark numerical examples, the results show that the novel DPSO has great advantages over current algorithm. The optimum designs of the 100-1 500 mm bellows under 0.25 MPa are fulfilled by DPSO. Comparing the optimization results with the bellows in-service, optimization results by discrete penalty particle swarm optimization(DPPSO) and theory solution, the comparison result shows that the global discrete optima of bellows are obtained by proposed DPSO, and confirms that the proposed novel DPSO and schemes can be used to solve the engineering constrained discrete problem successfully. 展开更多
关键词 discrete particle swarm optimization location updating scheme of constraints level huge value penalty optimization design BELLOWS
下载PDF
Dynamic Weapon Target Assignment Based on Intuitionistic Fuzzy Entropy of Discrete Particle Swarm 被引量:17
6
作者 Yi Wang Jin Li +1 位作者 Wenlong Huang Tong Wen 《China Communications》 SCIE CSCD 2017年第1期169-179,共11页
Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzz... Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem. 展开更多
关键词 intuitionistic fuzzy entropy discrete particle swarm optimization algorithm 0-1 knapsack problem weapon target assignment
下载PDF
A New Clustering Algorithm Using Adaptive Discrete Particle Swarm Optimization in Wireless Sensor Network 被引量:3
7
作者 余朝龙 郭文忠 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期19-22,共4页
Wireless sensor networks (WSNs) are mainly characterized by their limited and non-replenishable energy supply. Hence, the energy efficiency of the infrastructure greatly affects the network lifetime. Clustering is one... Wireless sensor networks (WSNs) are mainly characterized by their limited and non-replenishable energy supply. Hence, the energy efficiency of the infrastructure greatly affects the network lifetime. Clustering is one of the methods that can expand the lifespan of the whole network by grouping the sensor nodes according to some criteria and choosing the appropriate cluster heads(CHs). The balanced load of the CHs has an important effect on the energy consumption balancing and lifespan of the whole network. Therefore, a new CHs election method is proposed using an adaptive discrete particle swarm optimization (ADPSO) algorithm with a fitness value function considering the load balancing and energy consumption. Simulation results not only demonstrate that the proposed algorithm can have better performance in load balancing than low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), and dynamic clustering algorithm with balanced load (DCBL), but also imply that the proposed algorithm can extend the network lifetime more. 展开更多
关键词 load balancing energy consumption balancing cluster head(CH) adaptive discrete particle swarm optimization (ADPSO)
下载PDF
A discrete multi-swarm optimizer for radio frequency identification network scheduling 被引量:1
8
作者 陈瀚宁 朱云龙 《Journal of Central South University》 SCIE EI CAS 2014年第1期199-212,共14页
Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems ofte... Due to the effectiveness, simple deployment and low cost, radio frequency identification (RFID) systems are used in a variety of applications to uniquely identify physical objects. The operation of RFID systems often involves a situation in which multiple readers physically located near one another may interfere with one another's operation. Such reader collision must be minimized to avoid the faulty or miss reads. Specifically, scheduling the colliding RFID readers to reduce the total system transaction time or response time is the challenging problem for large-scale RFID network deployment. Therefore, the aim of this work is to use a successful multi-swarm cooperative optimizer called pseo to minimize both the reader-to-reader interference and total system transaction time in RFID reader networks. The main idea of pS20 is to extend the single population PSO to the interacting multi-swarm model by constructing hierarchical interaction topology and enhanced dynamical update equations. As the RFID network scheduling model formulated in this work is a discrete problem, a binary version of PS20 algorithm is proposed. With seven discrete benchmark functions, PS20 is proved to have significantly better performance than the original PSO and a binary genetic algorithm, pS20 is then used for solving the real-world RFID network scheduling problem. Numerical results for four test cases with different scales, ranging from 30 to 200 readers, demonstrate the performance of the proposed methodology. 展开更多
关键词 reader interference RFID network scheduling pS2O swarm intelligence discrete optimization
下载PDF
Parallel discrete lion swarm optimization algorithm for solving traveling salesman problem 被引量:2
9
作者 ZHANG Daoqing JIANG Mingyan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期751-760,共10页
As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optim... As a typical representative of the NP-complete problem, the traveling salesman problem(TSP) is widely utilized in computer networks, logistics distribution, and other fields. In this paper, a discrete lion swarm optimization(DLSO) algorithm is proposed to solve the TSP. Firstly, we introduce discrete coding and order crossover operators in DLSO. Secondly, we use the complete 2-opt(C2-opt) algorithm to enhance the local search ability.Then in order to enhance the efficiency of the algorithm, a parallel discrete lion swarm optimization(PDLSO) algorithm is proposed.The PDLSO has multiple populations, and each sub-population independently runs the DLSO algorithm in parallel. We use the ring topology to transfer information between sub-populations. Experiments on some benchmarks TSP problems show that the DLSO algorithm has a better accuracy than other algorithms, and the PDLSO algorithm can effectively shorten the running time. 展开更多
关键词 discrete lion swarm optimization(DLSO)algorithm complete 2-opt(C2-opt)algorithm parallel discrete lion swarm optimization(PDLSO)algorithm traveling salesman problem(TSP)
下载PDF
Service composition based on discrete particle swarm optimization in military organization cloud cooperation 被引量:2
10
作者 An Zhang Haiyang Sun +1 位作者 Zhili Tang Yuan Yuan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期590-601,共12页
This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users... This paper addresses the problem of service composition in military organization cloud cooperation(MOCC). Military service providers(MSP) cooperate together to provide military resources for military service users(MSU). A group of atom services, each of which has its level of quality of service(QoS), can be combined together into a certain structure to form a composite service. Since there are a large number of atom services having the same function, the atom service is selected to participate in the composite service so as to fulfill users' will. In this paper a method based on discrete particle swarm optimization(DPSO) is proposed to tackle this problem. The method aims at selecting atom services from service repositories to constitute the composite service, satisfying the MSU's requirement on QoS. Since the QoS criteria include location-aware criteria and location-independent criteria, this method aims to get the composite service with the highest location-aware criteria and the best-match location-independent criteria. Simulations show that the DPSO has a better performance compared with the standard particle swarm optimization(PSO) and genetic algorithm(GA). 展开更多
关键词 service composition cloud cooperation discrete particle swarm optimization(DPSO)
下载PDF
Topology Optimization for Harmonic Excitation Structures with Minimum Length Scale Control Using the Discrete Variable Method
11
作者 Hongliang Liu Peijin Wang +2 位作者 Yuan Liang Kai Long Dixiong Yang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期1941-1964,共24页
Continuumtopology optimization considering the vibration response is of great value in the engineering structure design.The aimof this studyis toaddress the topological designoptimizationof harmonic excitationstructur... Continuumtopology optimization considering the vibration response is of great value in the engineering structure design.The aimof this studyis toaddress the topological designoptimizationof harmonic excitationstructureswith minimumlength scale control to facilitate structuralmanufacturing.Astructural topology design based on discrete variables is proposed to avoid localized vibration modes,gray regions and fuzzy boundaries in harmonic excitation topology optimization.The topological design model and sensitivity formulation are derived.The requirement of minimum size control is transformed into a geometric constraint using the discrete variables.Consequently,thin bars,small holes,and sharp corners,which are not conducive to the manufacturing process,can be eliminated from the design results.The present optimization design can efficiently achieve a 0–1 topology configuration with a significantly improved resonance frequency in a wide range of excitation frequencies.Additionally,the optimal solution for harmonic excitation topology optimization is not necessarily symmetric when the load and support are symmetric,which is a distinct difference fromthe static optimization design.Hence,one-half of the design domain cannot be selected according to the load and support symmetry.Numerical examples are presented to demonstrate the effectiveness of the discrete variable design for excitation frequency topology optimization,and to improve the design manufacturability. 展开更多
关键词 discrete variable topology optimization harmonic excitation minimumlength scale control geometric constraint MANUFACTURABILITY
下载PDF
Discrete GWO Optimized Data Aggregation for Reducing Transmission Rate in IoT
12
作者 S.Siamala Devi K.Venkatachalam +1 位作者 Yunyoung Nam Mohamed Abouhawwash 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1869-1880,共12页
The conventional hospital environment is transformed into digital transformation that focuses on patient centric remote approach through advanced technologies.Early diagnosis of many diseases will improve the patient ... The conventional hospital environment is transformed into digital transformation that focuses on patient centric remote approach through advanced technologies.Early diagnosis of many diseases will improve the patient life.The cost of health care systems is reduced due to the use of advanced technologies such as Internet of Things(IoT),Wireless Sensor Networks(WSN),Embedded systems,Deep learning approaches and Optimization and aggregation methods.The data generated through these technologies will demand the bandwidth,data rate,latency of the network.In this proposed work,efficient discrete grey wolf optimization(DGWO)based data aggregation scheme using Elliptic curve Elgamal with Message Authentication code(ECEMAC)has been used to aggregate the parameters generated from the wearable sensor devices of the patient.The nodes that are far away from edge node will forward the data to its neighbor cluster head using DGWO.Aggregation scheme will reduce the number of transmissions over the network.The aggregated data are preprocessed at edge node to remove the noise for better diagnosis.Edge node will reduce the overhead of cloud server.The aggregated data are forward to cloud server for central storage and diagnosis.This proposed smart diagnosis will reduce the transmission cost through aggrega-tion scheme which will reduce the energy of the system.Energy cost for proposed system for 300 nodes is 0.34μJ.Various energy cost of existing approaches such as secure privacy preserving data aggregation scheme(SPPDA),concealed data aggregation scheme for multiple application(CDAMA)and secure aggregation scheme(ASAS)are 1.3μJ,0.81μJ and 0.51μJ respectively.The optimization approaches and encryption method will ensure the data privacy. 展开更多
关键词 discrete grey wolf optimization data aggregation cloud computing IOT WSN smart healthcare elliptic curve elgamal energy optimization
下载PDF
Optimizing the Multi-Objective Discrete Particle Swarm Optimization Algorithm by Deep Deterministic Policy Gradient Algorithm
13
作者 Sun Yang-Yang Yao Jun-Ping +2 位作者 Li Xiao-Jun Fan Shou-Xiang Wang Zi-Wei 《Journal on Artificial Intelligence》 2022年第1期27-35,共9页
Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains ... Deep deterministic policy gradient(DDPG)has been proved to be effective in optimizing particle swarm optimization(PSO),but whether DDPG can optimize multi-objective discrete particle swarm optimization(MODPSO)remains to be determined.The present work aims to probe into this topic.Experiments showed that the DDPG can not only quickly improve the convergence speed of MODPSO,but also overcome the problem of local optimal solution that MODPSO may suffer.The research findings are of great significance for the theoretical research and application of MODPSO. 展开更多
关键词 Deep deterministic policy gradient multi-objective discrete particle swarm optimization deep reinforcement learning machine learning
下载PDF
A Multi-UCAV cooperative occupation method based on weapon engagement zones for beyond-visual-range air combat 被引量:6
14
作者 Wei-hua Li Jing-ping Shi +2 位作者 Yun-yan Wu Yue-ping Wang Yong-xi Lyu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期1006-1022,共17页
Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation dur... Recent advances in on-board radar and missile capabilities,combined with individual payload limitations,have led to increased interest in the use of unmanned combat aerial vehicles(UCAVs)for cooperative occupation during beyond-visual-range(BVR)air combat.However,prior research on occupational decision-making in BVR air combat has mostly been limited to one-on-one scenarios.As such,this study presents a practical cooperative occupation decision-making methodology for use with multiple UCAVs.The weapon engagement zone(WEZ)and combat geometry were first used to develop an advantage function for situational assessment of one-on-one engagement.An encircling advantage function was then designed to represent the cooperation of UCAVs,thereby establishing a cooperative occupation model.The corresponding objective function was derived from the one-on-one engagement advantage function and the encircling advantage function.The resulting model exhibited similarities to a mixed-integer nonlinear programming(MINLP)problem.As such,an improved discrete particle swarm optimization(DPSO)algorithm was used to identify a solution.The occupation process was then converted into a formation switching task as part of the cooperative occupation model.A series of simulations were conducted to verify occupational solutions in varying situations,including two-on-two engagement.Simulated results showed these solutions varied with initial conditions and weighting coefficients.This occupation process,based on formation switching,effectively demonstrates the viability of the proposed technique.These cooperative occupation results could provide a theoretical framework for subsequent research in cooperative BVR air combat. 展开更多
关键词 Unmanned combat aerial vehicle Cooperative occupation Beyond-visual-range air combat Weapon engagement zone discrete particle swarm optimization Formation switching
下载PDF
Parallel power system restoration planning using heuristic initialization and discrete evolutionary programming 被引量:3
15
作者 Dian Najihah ABU TALIB Hazlie MOKHLIS +1 位作者 Mohamad Sofian ABU TALIP Kanendra NAIDU 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第6期991-1003,共13页
This paper proposes a sectionalizing planning for parallel power system restoration after a complete system blackout.Parallel restoration is conducted in order to reduce the total restoration process time.Physical and... This paper proposes a sectionalizing planning for parallel power system restoration after a complete system blackout.Parallel restoration is conducted in order to reduce the total restoration process time.Physical and operation knowledge of the system,operating personnel experience,and computer simulation are combined in this planning to improve the system restoration and serve as a guidance for system operators/planners.Sectionalizing planning is obtained using discrete evolutionary programming optimization method assisted by heuristic initialization and graph theory approach.Set of transmission lines that should not be restored during parallel restoration process(cut set)is determined in order to sectionalize the system into subsystems or islands.Each island with almost similar restoration time is set as an objective function so as to speed up the resynchronization of the islands.Restoration operation and constraints(black start generator availability,load-generation balance and maintaining acceptable voltage magnitude within each island)is also takeninto account in the course of this planning.The method is validated using the IEEE 39-bus and 118-bus system.Promising results in terms of restoration time was compared to other methods reported in the literature. 展开更多
关键词 Sectionalizing planning Parallel power system restoration Graph theory Heuristic initialization discrete evolutionary programming(DEP)optimization method
原文传递
An Integer Programming Model for the KenKen Problem 被引量:2
16
作者 Vardges Melkonian 《American Journal of Operations Research》 2016年第3期213-225,共13页
In this paper we consider modeling techniques for the mathematical puzzle KenKen. It is an interesting puzzle from modeling point of view since it has different kind of mathematical restrictions that are not trivial t... In this paper we consider modeling techniques for the mathematical puzzle KenKen. It is an interesting puzzle from modeling point of view since it has different kind of mathematical restrictions that are not trivial to express as linear constraints. We give an integer program for solving KenKen and and its implementation on modeling language AMPL. Our integer program uses an innovative way for converting product restrictions into linear constraints. It can be also used for teaching various integer programming techniques in an Operations Research course. 展开更多
关键词 Integer Programming Mathematical Games Education Operations Research discrete Optimization
下载PDF
Learning to sample initial solution for solving 0-1 discrete optimization problem by local search 被引量:1
17
作者 Xin Liu Jianyong Sun Zongben Xu 《Science China Mathematics》 SCIE CSCD 2024年第6期1317-1340,共24页
Local search methods are convenient alternatives for solving discrete optimization problems(DOPs).These easy-to-implement methods are able to find approximate optimal solutions within a tolerable time limit.It is know... Local search methods are convenient alternatives for solving discrete optimization problems(DOPs).These easy-to-implement methods are able to find approximate optimal solutions within a tolerable time limit.It is known that the quality of the initial solution greatly affects the quality of the approximated solution found by a local search method.In this paper,we propose to take the initial solution as a random variable and learn its preferable probability distribution.The aim is to sample a good initial solution from the learned distribution so that the local search can find a high-quality solution.We develop two different deep network models to deal with DOPs established on set(the knapsack problem)and graph(the maximum clique problem),respectively.The deep neural network learns the representation of an optimization problem instance and transforms the representation to its probability vector.Experimental results show that given the initial solution sampled from the learned probability distribution,a local search method can acquire much better approximate solutions than the randomly-sampled initial solution on the synthesized knapsack instances and the Erd?s-Rényi random graph instances.Furthermore,with sampled initial solutions,a classical genetic algorithm can achieve better solutions than a random initialized population in solving the maximum clique problems on DIMACS instances.Particularly,we emphasize that the developed models can generalize in dimensions and across graphs with various densities,which is an important advantage on generalizing deep-learning-based optimization algorithms. 展开更多
关键词 discrete optimization deep learning graph convolutional network local search
原文传递
A Novel Binary Firefly Algorithm for the Minimum Labeling Spanning Tree Problem
18
作者 Mugang Lin Fangju Liu +1 位作者 Huihuang Zhao Jianzhen Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期197-214,共18页
Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatoria... Given a connected undirected graph G whose edges are labeled,the minimumlabeling spanning tree(MLST)problemis to find a spanning tree of G with the smallest number of different labels.TheMLST is anNP-hard combinatorial optimization problem,which is widely applied in communication networks,multimodal transportation networks,and data compression.Some approximation algorithms and heuristics algorithms have been proposed for the problem.Firefly algorithm is a new meta-heuristic algorithm.Because of its simplicity and easy implementation,it has been successfully applied in various fields.However,the basic firefly algorithm is not suitable for discrete problems.To this end,a novel discrete firefly algorithm for the MLST problem is proposed in this paper.A binary operation method to update firefly positions and a local feasible handling method are introduced,which correct unfeasible solutions,eliminate redundant labels,and make the algorithm more suitable for discrete problems.Computational results show that the algorithm has good performance.The algorithm can be extended to solve other discrete optimization problems. 展开更多
关键词 Minimum labeling spanning tree problem binary firefly algorithm META-HEURISTICS discrete optimization
下载PDF
Vibration performance discrete optimization of a gear system featuring confluence transmission used in marine gearbox
19
作者 Zeyin He Tao Deng Xiangyang Xu 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2017年第1期165-178,共14页
A dynamic model of gear transmission system which includes time-varying meshing stiffness,meshing damp and transmission error is established.Next,the analytical solution of the vibration response would be obtained by ... A dynamic model of gear transmission system which includes time-varying meshing stiffness,meshing damp and transmission error is established.Next,the analytical solution of the vibration response would be obtained by solving the dynamic model based on the harmonic balance method.And on this basis,a dynamic performance discrete optimization model of transmission sub-system would be constructed,which sets objective function up from vibration acceleration and the total mass of transmission sub-system,treats the module,number of teeth and helix angle as design variables,and takes gear strength and assembly relationship as constraints.Last,the optimal solution of design variables could be obtained through the multivariable mixed discrete optimization program which based on the branch-bound algorithm.The results show that the vibration acceleration and the total mass of transmission sub-system reduce by 34.6%and 6.8%,respectively. 展开更多
关键词 Gear transmission system dynamic model vibration performance discrete optimization
原文传递
Smart Clothing Fabric Color Matching with Reference to Popular Colors
20
作者 ZHANG Yani ZHUANG Jianqiang +2 位作者 HUANG Rong DONG Aihua YUAN Haodong 《Journal of Donghua University(English Edition)》 CAS 2022年第4期317-324,共8页
Color economy and market fashion trend have an increasing impact on clothing fabric color matching.Therefore,a smart clothing fabric color matching system with reference to popular colors is designed to realize the di... Color economy and market fashion trend have an increasing impact on clothing fabric color matching.Therefore,a smart clothing fabric color matching system with reference to popular colors is designed to realize the diversification of clothing color matching,which includes a palette generation module and a clothing fabrics-palette color matching network(CF-PCN).Firstly,palette generation module generates palettes referring popular colors while maintains color styles of clothing fabrics.Secondly,CF-PCN generates color matching images containing color information of palettes.The experimental results show that the color matching system has a higher average pixel ratio of palette colors and contains more palette color information.It demonstrates that the system achieves color matching innovation referring popular colors while retaining color style of clothing brands and provides designers with appropriate color matching solutions. 展开更多
关键词 popular color clothing fabric color matching support vector machine(SVM) discrete particle swarm optimization algorithm generative adversarial network
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部