Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biolo...Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.展开更多
In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from...In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from the existing works, the proposed algorithm is energy-efficient which is more applicable to the future green network. It considers both the sum-MSE problem and the power consumption problem for the users under the relay power constraint. Based on the optimal condition decomposition(OCD) method, the energy-efficient precoders at the users can be designed separately with limited information exchanged. The proposed relay beamforming algorithm is based on the alternative direction method of multipliers(ADMM) which has simpler iterative solution and enjoys good convergence. Simulation results demonstrate the performance of the proposed algorithms in terms of power consumption and MSE performance.展开更多
Trusted Execution Environment(TEE)is an important part of the security architecture of modern mobile devices,but its secure interaction process brings extra computing burden to mobile devices.This paper takes open por...Trusted Execution Environment(TEE)is an important part of the security architecture of modern mobile devices,but its secure interaction process brings extra computing burden to mobile devices.This paper takes open portable trusted execution environment(OP-TEE)as the research object and deploys it to Raspberry Pi 3B,designs and implements a benchmark for OP-TEE,and analyzes its program characteristics.Furthermore,the application execution time,energy consumption and energy-delay product(EDP)are taken as the optimization objectives,and the central processing unit(CPU)frequency scheduling strategy of mobile devices is dynamically adjusted according to the characteristics of different applications through the combined model.The experimental result shows that compared with the default strategy,the scheduling method proposed in this paper saves 21.18%on average with the Line Regression-Decision Tree scheduling model with the shortest delay as the optimization objective.The Decision Tree-Support Vector Regression(SVR)scheduling model,which takes the lowest energy consumption as the optimization goal,saves 22%energy on average.The Decision Tree-K-Nearest Neighbor(KNN)scheduling model with the lowest EDP as the optimization objective optimizes about 33.9%on average.展开更多
Mobile cloud computing(MCC) combines mobile Internet and cloud computing to improve the performance of mobile applications. However, MCC faces the problem of energy efficiency because of randomly varying channels. A...Mobile cloud computing(MCC) combines mobile Internet and cloud computing to improve the performance of mobile applications. However, MCC faces the problem of energy efficiency because of randomly varying channels. A scheduling algorithm is proposed by introducing the Lyapunov optimization, which can dynamically choose users to transmit data based on queue backlog and channel statistics. The Lyapunov analysis shows that the proposed scheduling algorithm can make a tradeoff between queue backlog and energy consumption in the channel-aware mobile cloud computing system. The simulation results verify the effectiveness of the proposed algorithm.展开更多
It’s systematically analyzed that energy efficiency optimization technology has been applied in the field of steel industry. The fundamental principal of energy optimization technology is reasonably matching the qual...It’s systematically analyzed that energy efficiency optimization technology has been applied in the field of steel industry. The fundamental principal of energy optimization technology is reasonably matching the quality and price of energy as well as energy-dominated systematic energy efficiency management system. Specific measures of energy optimization have been put forward, which include taking high efficiency utilized technology such as energy saving from the original, the production process and recycling of waste heat and waste energy etc., integrating and configuring energy in an optimized way of high efficiency and excellent quality, fully realizing the function of different energy in order to optimize the utilization sequence of energy, and improving the energy medium system by themselves. Finally it is clearly pointed out that the steel industry should pay more consideration about the great deal of energy system which they have used now and an ideal energy evaluation methodology and standard should be built as soon as possible if they want to take full usage of the real role and function of energy in all aspects.展开更多
A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal...A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.展开更多
With the rapid development of wireless technologies,wireless access networks have entered their Fifth-Generation(5G)system phase.The heterogeneous and complex nature of a 5G system,with its numerous technological scen...With the rapid development of wireless technologies,wireless access networks have entered their Fifth-Generation(5G)system phase.The heterogeneous and complex nature of a 5G system,with its numerous technological scenarios,poses significant challenges to wireless resource management,making radio resource optimization an important aspect of Device-to-Device(D2D)communication in such systems.Cellular D2D communication can improve spectrum efficiency,increase system capacity,and reduce base station communication burdens by sharing authorized cell resources;however,can also cause serious interference.Therefore,research focusing on reducing this interference by optimizing the configuration of shared cellular resources has also grown in importance.This paper proposes a novel algorithm to address the problems of co-channel interference and energy efficiency optimization in a long-term evolution network.The proposed algorithm uses the fuzzy clustering method,which employs minimum outage probability to divide D2D users into several groups in order to improve system throughput and reduce interference between users.An efficient power control algorithm based on game theory is also proposed to optimize user transmission power within each group and thereby improve user energy efficiency.Simulation results show that these proposed algorithms can effectively improve system throughput,reduce co-channel interference,and enhance energy efficiency.展开更多
A trusted execution environment(TEE)is a system-on-chip and CPU system with a wide security solution available on today’s Arm application(APP)processors,which dominate the smartphone market.Generally,mobile APPs crea...A trusted execution environment(TEE)is a system-on-chip and CPU system with a wide security solution available on today’s Arm application(APP)processors,which dominate the smartphone market.Generally,mobile APPs create a trusted application(TA)in the TEE to process sensitive information,such as payment or message encryption,which is transparent to the APPs running in the rich execution environments(REEs).In detail,the REE and TEE interact and eventually send back the results to the APP in the REE through the interface provided by the TA.Such an operation definitely increases the overhead of mobile APPs.In this paper,we first present a comprehensive analysis of the performance of open-source TEE encrypted text.We then propose a high energy-efficient task scheduling strategy(ETS-TEE).By leveraging the deep learning algorithm,our policy considers the complexity of TA tasks,which are dynamically scheduled between modeling on the local device and offloading to an edge server.We evaluate our approach on Raspberry Pi 3B as the local mobile device and Jetson TX2 as the edge server.The results show that compared with the default scheduling strategy on the local device,our approach achieves an average of 38.0%energy reduction and 1.6×speedup.This greatly reduces the performance loss caused by mobile devices in order to protect the safe execution of applications,so that the trusted execution environment has both security and high performance.展开更多
Energy saving is the crucial task of green architecture,energy-saving design and evaluation should be interactive.Low Energy Certificate(LEC),an interactive computer program for energy efficiency and certification of ...Energy saving is the crucial task of green architecture,energy-saving design and evaluation should be interactive.Low Energy Certificate(LEC),an interactive computer program for energy efficiency and certification of building envelope,is briefly introduced in this paper in aspects of certification standards,procedure,methods etc.Through the evaluation report of Innovation-pavilion PoI features,reference values of LEC are presented.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105062 and 11265014the Fundamental Research Funds for the Central Universities under Grant Nos LZUJBKY-2011-57 and LZUJBKY-2015-119
文摘Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.
基金supported by China National S&T Major Project 2013ZX03003002-003National Natural Science Foundation of China under Grant No. 61176027, No.61421001111 Project of China under Grant B14010
文摘In this paper, we focus on energy-efficient transceiver and relay beamforming design for multi-pair two-way relay system. The multi-antenna users and the multi-antenna relay are considered in this work. Different from the existing works, the proposed algorithm is energy-efficient which is more applicable to the future green network. It considers both the sum-MSE problem and the power consumption problem for the users under the relay power constraint. Based on the optimal condition decomposition(OCD) method, the energy-efficient precoders at the users can be designed separately with limited information exchanged. The proposed relay beamforming algorithm is based on the alternative direction method of multipliers(ADMM) which has simpler iterative solution and enjoys good convergence. Simulation results demonstrate the performance of the proposed algorithms in terms of power consumption and MSE performance.
基金funded by National Key Research and Development Program of China under Grant No.2019YFC1520904 from January 2020 to April 2023funded by Shaanxi Innovation Program under Grant 2023-CX-TD-04 January 2023 to December 2025.
文摘Trusted Execution Environment(TEE)is an important part of the security architecture of modern mobile devices,but its secure interaction process brings extra computing burden to mobile devices.This paper takes open portable trusted execution environment(OP-TEE)as the research object and deploys it to Raspberry Pi 3B,designs and implements a benchmark for OP-TEE,and analyzes its program characteristics.Furthermore,the application execution time,energy consumption and energy-delay product(EDP)are taken as the optimization objectives,and the central processing unit(CPU)frequency scheduling strategy of mobile devices is dynamically adjusted according to the characteristics of different applications through the combined model.The experimental result shows that compared with the default strategy,the scheduling method proposed in this paper saves 21.18%on average with the Line Regression-Decision Tree scheduling model with the shortest delay as the optimization objective.The Decision Tree-Support Vector Regression(SVR)scheduling model,which takes the lowest energy consumption as the optimization goal,saves 22%energy on average.The Decision Tree-K-Nearest Neighbor(KNN)scheduling model with the lowest EDP as the optimization objective optimizes about 33.9%on average.
基金supported by the National Natural Science Foundation of China(61173017)the National High Technology Research and Development Program(863 Program)(2014AA01A701)
文摘Mobile cloud computing(MCC) combines mobile Internet and cloud computing to improve the performance of mobile applications. However, MCC faces the problem of energy efficiency because of randomly varying channels. A scheduling algorithm is proposed by introducing the Lyapunov optimization, which can dynamically choose users to transmit data based on queue backlog and channel statistics. The Lyapunov analysis shows that the proposed scheduling algorithm can make a tradeoff between queue backlog and energy consumption in the channel-aware mobile cloud computing system. The simulation results verify the effectiveness of the proposed algorithm.
文摘It’s systematically analyzed that energy efficiency optimization technology has been applied in the field of steel industry. The fundamental principal of energy optimization technology is reasonably matching the quality and price of energy as well as energy-dominated systematic energy efficiency management system. Specific measures of energy optimization have been put forward, which include taking high efficiency utilized technology such as energy saving from the original, the production process and recycling of waste heat and waste energy etc., integrating and configuring energy in an optimized way of high efficiency and excellent quality, fully realizing the function of different energy in order to optimize the utilization sequence of energy, and improving the energy medium system by themselves. Finally it is clearly pointed out that the steel industry should pay more consideration about the great deal of energy system which they have used now and an ideal energy evaluation methodology and standard should be built as soon as possible if they want to take full usage of the real role and function of energy in all aspects.
基金Supported by the National Science and Technology Support Program(2013BAG12B01)Foundational and Advanced Research Program General Project of Chongqing City(cstc2013jcyjjq60002)
文摘A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.
基金Deanship of Scientific Research (DSR) at King Abdulaziz University,Jeddah,Saudi Arabia,under grant no.G:734-611-1441.
文摘With the rapid development of wireless technologies,wireless access networks have entered their Fifth-Generation(5G)system phase.The heterogeneous and complex nature of a 5G system,with its numerous technological scenarios,poses significant challenges to wireless resource management,making radio resource optimization an important aspect of Device-to-Device(D2D)communication in such systems.Cellular D2D communication can improve spectrum efficiency,increase system capacity,and reduce base station communication burdens by sharing authorized cell resources;however,can also cause serious interference.Therefore,research focusing on reducing this interference by optimizing the configuration of shared cellular resources has also grown in importance.This paper proposes a novel algorithm to address the problems of co-channel interference and energy efficiency optimization in a long-term evolution network.The proposed algorithm uses the fuzzy clustering method,which employs minimum outage probability to divide D2D users into several groups in order to improve system throughput and reduce interference between users.An efficient power control algorithm based on game theory is also proposed to optimize user transmission power within each group and thereby improve user energy efficiency.Simulation results show that these proposed algorithms can effectively improve system throughput,reduce co-channel interference,and enhance energy efficiency.
基金supported by the National Natural Science Foundation of China (No.61902229)Fundamental Research Funds for the Central Universities (No.GK202103084).
文摘A trusted execution environment(TEE)is a system-on-chip and CPU system with a wide security solution available on today’s Arm application(APP)processors,which dominate the smartphone market.Generally,mobile APPs create a trusted application(TA)in the TEE to process sensitive information,such as payment or message encryption,which is transparent to the APPs running in the rich execution environments(REEs).In detail,the REE and TEE interact and eventually send back the results to the APP in the REE through the interface provided by the TA.Such an operation definitely increases the overhead of mobile APPs.In this paper,we first present a comprehensive analysis of the performance of open-source TEE encrypted text.We then propose a high energy-efficient task scheduling strategy(ETS-TEE).By leveraging the deep learning algorithm,our policy considers the complexity of TA tasks,which are dynamically scheduled between modeling on the local device and offloading to an edge server.We evaluate our approach on Raspberry Pi 3B as the local mobile device and Jetson TX2 as the edge server.The results show that compared with the default scheduling strategy on the local device,our approach achieves an average of 38.0%energy reduction and 1.6×speedup.This greatly reduces the performance loss caused by mobile devices in order to protect the safe execution of applications,so that the trusted execution environment has both security and high performance.
文摘Energy saving is the crucial task of green architecture,energy-saving design and evaluation should be interactive.Low Energy Certificate(LEC),an interactive computer program for energy efficiency and certification of building envelope,is briefly introduced in this paper in aspects of certification standards,procedure,methods etc.Through the evaluation report of Innovation-pavilion PoI features,reference values of LEC are presented.